5,903 research outputs found

    Apolipoprotein M

    Get PDF
    Apolipoprotein M (apoM) is a 26-kDa protein that is mainly associated with high-density lipoprotein (HDL) in human plasma, with a small proportion present in triglyceride-rich lipoproteins (TGRLP) and low-density lipoproteins (LDL). Human apoM gene is located in p21.31 on chromosome 6 (chromosome 17, in mouse). Human apoM cDNA (734 base pairs) encodes 188-amino acid residue-long protein. It belongs to lipocalin protein superfamily. Human tissue expression array study indicates that apoM is only expressed in liver and in kidney and small amounts are found in fetal liver and kidney. In situ apoM mRNA hybridization demonstrates that apoM is exclusively expressed in the hepatocytes and in the tubule epithelial cells in kidney. Expression of apoM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF) and leptin in vivo and/or in vitro. It has been demonstrated that apoM expression is dramatically decreased in apoA-I deficient mouse. Hepatocyte nuclear factor-1α (HNF-1α) is an activator of apoM gene promoter. Deficiency of HNF-1α mouse shows lack of apoM expression. Mutations in HNF-1α (MODY3) have reduced serum apoM levels. Expression of apoM is significantly decreased in leptin deficient (ob/ob) mouse or leptin receptor deficient (db/db) mouse. ApoM concentration in plasma is positively correlated to leptin level in obese subjects. These may suggest that apoM is related to the initiation and progression of MODY3 and/or obesity

    Small data global regularity for simplified 3-D Ericksen-Leslie's compressible hyperbolic liquid crystal model

    Full text link
    In this article, we consider the Ericksen-Leslie's hyperbolic system for compressible liquid crystal model in three spatial dimensions. Global regularity for small and smooth initial data near equilibrium is proved for the case that the system is a nonlinear coupling of compressible Navier-Stokes equations with wave map to S2\mathbb{S}^2. Our argument is a combination of vector field method and Fourier analysis. The main strategy to prove global regularity relies on an interplay between the control of high order energies and decay estimates, which is based on the idea inspired by the method of space-time resonances. In particular the different behaviors of the decay properties of the density and velocity field for compressible fluids at different frequencies play a key role.Comment: 61 pages; all comments wellcom

    Electronic structures of [111]-oriented free-standing InAs and InP nanowires

    Full text link
    We report on a theoretical study of the electronic structures of the [111]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic sp3ssp^{3}s^{*} , spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C3vC_{3v} double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ\Gamma-point and some of these bands will split into non-degenerate bands when the wave vector kk moves away from the Γ\Gamma-point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π/32\pi/3-rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [111]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement.Comment: 9 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1502.0756

    Possible Deuteron-like Molecular States Composed of Heavy Baryons

    Full text link
    We perform a systematic study of the possible loosely bound states composed of two charmed baryons or a charmed baryon and an anti-charmed baryon within the framework of the one boson exchange (OBE) model. We consider not only the π\pi exchange but also the η\eta, ρ\rho, ω\omega, ϕ\phi and σ\sigma exchanges. The SDS-D mixing effects for the spin-triplets are also taken into account. With the derived effective potentials, we calculate the binding energies and root-mean-square (RMS) radii for the systems ΛcΛc(Λˉc)\Lambda_c\Lambda_c(\bar{\Lambda}_c), ΞcΞc(Ξˉc)\Xi_c\Xi_c(\bar{\Xi}_c), ΣcΣc(Σˉc)\Sigma_c\Sigma_c(\bar{\Sigma}_c), ΞcΞc(Ξˉc)\Xi_c^\prime\Xi_c^\prime(\bar{\Xi}_c^\prime) and ΩcΩc(Ωˉc)\Omega_c\Omega_c(\bar{\Omega}_c). Our numerical results indicate that: (1) the H-dibaryon-like state ΛcΛc\Lambda_c\Lambda_c does not exist; (2) there may exist four loosely bound deuteron-like states ΞcΞc\Xi_c\Xi_c and ΞcΞc\Xi_c^\prime\Xi_c^\prime with small binding energies and large RMS radii.Comment: 17 pages, 32 figure

    Methods and compositions for modulating gene expression in plants

    Get PDF
    The present invention provides methods and compositions for regulation of gene expression in plants. In particular, the invention provides nucleic acids that can confer tissue specific and constitutive expression to operably linked polynucleotides of interest
    corecore