190 research outputs found

    WordSup: Exploiting Word Annotations for Character based Text Detection

    Full text link
    Imagery texts are usually organized as a hierarchy of several visual elements, i.e. characters, words, text lines and text blocks. Among these elements, character is the most basic one for various languages such as Western, Chinese, Japanese, mathematical expression and etc. It is natural and convenient to construct a common text detection engine based on character detectors. However, training character detectors requires a vast of location annotated characters, which are expensive to obtain. Actually, the existing real text datasets are mostly annotated in word or line level. To remedy this dilemma, we propose a weakly supervised framework that can utilize word annotations, either in tight quadrangles or the more loose bounding boxes, for character detector training. When applied in scene text detection, we are thus able to train a robust character detector by exploiting word annotations in the rich large-scale real scene text datasets, e.g. ICDAR15 and COCO-text. The character detector acts as a key role in the pipeline of our text detection engine. It achieves the state-of-the-art performance on several challenging scene text detection benchmarks. We also demonstrate the flexibility of our pipeline by various scenarios, including deformed text detection and math expression recognition.Comment: 2017 International Conference on Computer Visio

    Zero-Resource Hallucination Prevention for Large Language Models

    Full text link
    The prevalent use of large language models (LLMs) in various domains has drawn attention to the issue of "hallucination," which refers to instances where LLMs generate factually inaccurate or ungrounded information. Existing techniques for hallucination detection in language assistants rely on intricate fuzzy, specific free-language-based chain of thought (CoT) techniques or parameter-based methods that suffer from interpretability issues. Additionally, the methods that identify hallucinations post-generation could not prevent their occurrence and suffer from inconsistent performance due to the influence of the instruction format and model style. In this paper, we introduce a novel pre-detection self-evaluation technique, referred to as {\method}, which focuses on evaluating the model's familiarity with the concepts present in the input instruction and withholding the generation of response in case of unfamiliar concepts. This approach emulates the human ability to refrain from responding to unfamiliar topics, thus reducing hallucinations. We validate {\method} across four different large language models, demonstrating consistently superior performance compared to existing techniques. Our findings propose a significant shift towards preemptive strategies for hallucination mitigation in LLM assistants, promising improvements in reliability, applicability, and interpretability

    Pore-scale study of miscible density instability with viscosity contrast in porous media

    Get PDF
    The transport of miscible fluids in porous media is a prevalent phenomenon that occurs in various natural and industrial contexts. However, this fundamental phenomenon is usually coupled with interface instabilities (e.g., viscous/density fingering), which has yet to be thoroughly investigated. In this paper, a multiple-relaxation-time lattice Boltzmann method is applied to study the displacement between two miscible fluids in porous media at the pore scale, with the coexistence of density difference (Rayleigh number Ra), viscosity contrast (R), and injection velocity (Utop). A parametric study is conducted to evaluate the impact of Ra, R, and Utop on the flow stability. For a fixed Ra that can trigger density fingering, the increase in R or Utop is found to suppress density fingering. Consequently, under a large Utop and a moderate R, the density fingering is fully stabilized and the flow follows a stabile pattern. Furthermore, as both R and Utop grow to a sufficiently high level, they can jointly trigger viscous fingering. In addition, the increasing Ra shows an enhancing effect on both density fingering and viscous fingering. Finally, by quantitatively analyzing the fingering length (lm) and the fingering propagation time (te), five different flow patterns are classified as viscosity-suppressed (I), viscosity-enhanced (II), viscosity-unstable (III), displacement-suppressed (IV), and stable (V) regimes. In a three-dimensional parameter space spanned by Ra, R, and Utop, the parameter ranges of the five regimes are determined according to lm and te. These findings hold a significant value in providing guidance for controlling the flow stability by selecting appropriate operating conditions

    Symmetric Pruning in Quantum Neural Networks

    Full text link
    Many fundamental properties of a quantum system are captured by its Hamiltonian and ground state. Despite the significance of ground states preparation (GSP), this task is classically intractable for large-scale Hamiltonians. Quantum neural networks (QNNs), which exert the power of modern quantum machines, have emerged as a leading protocol to conquer this issue. As such, how to enhance the performance of QNNs becomes a crucial topic in GSP. Empirical evidence showed that QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes, while theoretical explanations have not been explored. To fill this knowledge gap, here we propose the effective quantum neural tangent kernel (EQNTK) and connect this concept with over-parameterization theory to quantify the convergence of QNNs towards the global optima. We uncover that the advance of symmetric ansatzes attributes to their large EQNTK value with low effective dimension, which requests few parameters and quantum circuit depth to reach the over-parameterization regime permitting a benign loss landscape and fast convergence. Guided by EQNTK, we further devise a symmetric pruning (SP) scheme to automatically tailor a symmetric ansatz from an over-parameterized and asymmetric one to greatly improve the performance of QNNs when the explicit symmetry information of Hamiltonian is unavailable. Extensive numerical simulations are conducted to validate the analytical results of EQNTK and the effectiveness of SP.Comment: Accepted to International Conference on Learning Representations (ICLR) 202

    Lattice Boltzmann modelling of salt precipitation during brine evaporation

    Get PDF
    Salt precipitation during brine evaporation in porous media is an important phenomenon in a variety of natural and engineering scenarios. This work establishes a multiphase multicomponent lattice Boltzmann (LB) method with phase change for simulating salt precipitation during brine evaporation. In the proposed LB models, the gas–brine multiphase flow, brine evaporation, salt concentration evolution, salt precipitate nucleation and growth are simultaneously considered. Simulations of the Stefan problem are first conducted to verify the proposed numerical models and determine the diffusion coefficient of brine vapour. Once the lattice Boltzmann models have been validated, salt precipitation during brine evaporation is simulated to investigate the competition mechanisms between salt precipitate nucleation and growth reaction. The results show that the typical salt precipitation patterns in existing experimental observation can be successfully reproduced, including the ring-like and pancake-like patterns. The difference in the salt precipitation patterns is explained by the competition mechanism between precipitate growth and nucleation according to the present study. Furthermore, the salt precipitation during gas injection into a microfluidic chip is investigated. The evolution of salt and brine saturation shows similar patterns to existing experimental results, and the effects of the gas injection rate on salt precipitation performance are clarified. The LB models in the present work can simulate salt precipitation with comprehensive consideration of multiphase brine evaporation, salt species mass transport, precipitate nucleation and growth, which have not been realized in previous studies. The numerical showcases demonstrate the excellent performance of the proposed models for the simulation of salt precipitation in porous media, which promise to guide practical engineering applications like CO2 sequestration
    • …
    corecore