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ABSTRACT

The transport of miscible fluids in porous media is a prevalent phenomenon that occurs in various natural and industrial contexts. However,
this fundamental phenomenon is usually coupled with interface instabilities (e.g., viscous/density fingering), which has yet to be thoroughly
investigated. In this paper, a multiple-relaxation-time lattice Boltzmann method is applied to study the displacement between two miscible
fluids in porous media at the pore scale, with the coexistence of density difference (Rayleigh number Ra), viscosity contrast (R), and injection
velocity (Utop). A parametric study is conducted to evaluate the impact of Ra, R, and Utop on the flow stability. For a fixed Ra that can trigger
density fingering, the increase in R or Utop is found to suppress density fingering. Consequently, under a large Utop and a moderate R, the
density fingering is fully stabilized and the flow follows a stabile pattern. Furthermore, as both R and Utop grow to a sufficiently high level, they
can jointly trigger viscous fingering. In addition, the increasing Ra shows an enhancing effect on both density fingering and viscous fingering.
Finally, by quantitatively analyzing the fingering length (lm) and the fingering propagation time (te), five different flow patterns are classified
as viscosity-suppressed (I), viscosity-enhanced (II), viscosity-unstable (III), displacement-suppressed (IV), and stable (V) regimes. In a three-
dimensional parameter space spanned by Ra, R, and Utop, the parameter ranges of the five regimes are determined according to lm and te.
These findings hold a significant value in providing guidance for controlling the flow stability by selecting appropriate operating conditions.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0161872

I. INTRODUCTION

Carbon dioxide (CO2) emission has been an increasing concern
due to its role as a main source of greenhouse gases, which cause global
warming, iceberg melting, and sea level increasing.1,2 Among the
known technologies for reducing CO2 emissions, carbon capture and
storage (CCS) is one of the most promising methods in terms of cost
and scale.3 Deep saline aquifers are the most popular storage sites due
to their large space and availability.4 In CCS, CO2 is injected into the
aquifer and gradually dissolved into the brine.5 The CO2 dissolution
slightly increases the brine density, thus introducing a buoyantly
unstable stratification of a denser CO2-enriched brine on top of the
fresh brine.6,7 Such a stratification finally triggers density instability
accompanied by strong convection, which plays a significant role in
enhancing the dissolution and spreading of CO2 into the aquifers.8,9

Meanwhile, aside from the increasing effect on density, the dissolution
of CO2 also modifies the fluid viscosity.10 The viscosity contrast can
greatly affect the onset and development of density fingering.11

Therefore, it is essential to study density instability with viscosity con-
trast in porous media to enhance the understanding of CCS.

Density-driven convection under the context of CO2 storage has
been extensively studied experimentally, numerically, and theoreti-
cally.12–21 Experiments were performed in Hele–Shaw cells, micromo-
dels, sand packs, or cores to identify density instability patterns and
analyze the underlying mechanisms.16,17,22 The key factors for acceler-
ating fluid transport and affecting fluid mixing were discussed.13

However, these experiments were hard to exactly control the configu-
ration of porous media or concentration perturbations, which might
greatly influence the instability pattern.21 Moreover, experiments were
generally time-consuming, costly, and highly subjective to human and
equipment capacities.13 Theoretical analysis played an important role
in predicting possible instabilities. Many theoretical studies have been
reported based on the linear stability analysis and the scaling analy-
sis.18,19,23–31 These theoretical analyses focused on predicting the onset
of fingering via analyzing the growth rate of initial perturbations,
which were able to cover the possible instability scenarios at an initial
stage before nonlinear behaviors happen.18 For viscous fingering with
gravitational force, the concept of critical velocity was proposed to
decide the velocity bounds for stability or instability.28–31 However,
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theoretical studies could not describe the whole-life behaviors of den-
sity instability.

Numerical simulations are helpful to understanding the CO2 dis-
solution and transport behaviors during CCS. For such a process,
numerical studies were conducted to investigate mechanisms of both
density and viscous instabilities. For density fingering, the whole-life
behaviors of fingering development in porous media were simulated
and it was revealed that the nonlinear interactions of fingers exert a
substantial influence on both the speed of front propagation and the
overall mixing.18 Four development stages were identified as diffusion,
early convection, late convection, and convection shutdown.32 The
flux growth regime was further divided into two sub-regimes: the early
flux growth regime caused by tiny fingers and the late flux growth
regime caused by the nonlinear perturbations.21 The nonlinear inter-
actions between chemical reactions and density fingering were stud-
ied.33 Moreover, the effects of perturbations and porous media
ignored in experiments were also reported in numerical simula-
tions.15,24 In CCS, the density instability caused by the dissolution of
CO2 results in an acceleration of mass transport between fluids, thus
reducing the time required for CO2 storage.

34 As for viscous fingering,
the viscosity contrast was found to introduce mobility differences and
thus yield viscous fingering phenomena between two displacement flu-
ids.35 The nonlinear phenomena of shielding and spreading were
observed in simulations, together with the tip splitting in miscible dis-
placement first reported by Tan and Homsy.36 Furthermore, the calcu-
lated metric of mixing length, serving as an indicator of fingering
development, was found to grow linearly over time.37 The viscosity
ratio was then reported to play a significant role in influencing the fin-
gering onset and the fingering dynamics.20,35,38–42 Larger viscosity
ratios were found to delay the fingering onset but result in an increased
number of fingers with smaller characteristic wavelength.43 Similar to
density fingering, the development of viscous fingering was divided
into different stages according to the fingering’s full-lifecycle.42

Moreover, within the context of CCS, viscous fingering was observed
to introduce flow channels for CO2 leakage, yet simultaneously induce
strong convection for enhancing fluid dissolution.42 Effects of media
heterogeneity, magnetic field, and nanoparticles on the development
of viscous fingering were explored.39–41 Chemical reactions were found
to have complex effects on viscous fingering by changing both the fluid
concentration and the media porosity.20,38,44,45

The above studies provide much insight into density and viscous
instabilities in porous media. However, there remain two main prob-
lems. On the one hand, all the above research is considered either den-
sity fingering or viscous fingering, which included density or viscosity
contrasts. In applications of CCS, however, the dissolution of CO2

modifies both fluid density and viscosity, thus introducing differences
in both density and viscosity between the displacing and displaced flu-
ids. There exist some studies on density-driven convection coupled
with viscosity contrast through experimental observations.11,46 It was
reported that viscosity contrast played an important role in convective
mixing by changing the dissolution rate and onset time.46 Different
fingering structures and dissolution behaviors were observed for differ-
ent viscosity ratios. However, the inherent limitations of experiments
restricted the available parameters in experiments, and thus the mech-
anism underlying the density fingering with viscosity contrast was not
fully investigated. On the other hand, due to the complicated structure
of porous media, current numerical studies were mainly based on

volume-averaged scales, like representative elementary volume scale or
Darcy scale. A pioneering study was conducted, utilizing a Hartley-
transform-based pseudospectral method to simulate the situations
when viscosity and density contrasts have opposite effects on stabil-
ity.27 However, these volume-average studies were likely to introduce
errors if without pore-scale information.47 Therefore, a pore-scale
study is needed to show the details of density fingering with viscosity
contrast.

This study is aimed at providing a pore-scale simulation of den-
sity instability with the coexistence of viscosity contrast, thereby get-
ting a deeper understanding of how the viscosity contrast affects
instability development and then the fluid dissolution. In addition, the
effects of injection velocity of the top layer are also investigated in this
paper as an innovative attempt. During the past decades, the lattice
Boltzmann method (LBM) has become a powerful solver for simulat-
ing fluid flows in porous media at the pore scale. This is attributed to
its advantages in parallel computing and handling complex bound-
aries.48 In this study, a multiple-relaxation-time (MRT) lattice
Boltzmann (LB) method is utilized to solve the governing equations
and the nonequilibrium extrapolation method, and the halfway
bounce-back method are used to deal with the boundary conditions.

II. CONFIGURATION

As shown in Fig. 1, the computational domain is a homogeneous
2D system with length lx and width ly . A set of uniformly distributed
solid grains is utilized inside the domain to simulate the porous struc-
ture in reality. The detailed location and size settings for these grains
are shown in Fig. 1. In order to study the fingering phenomenon under
the effects of gravity, viscosity difference, and injection velocity, two
fluids (labeled as fluid 1 and fluid 2) are introduced in this system.
These two fluids are considered miscible, nonreactive, isothermal, and
incompressible. Initially, fluid 2 without solute A suffuses the whole
domain. Then, fluid 1 with solute A at a concentration of C0 is injected
into the system from the top. The injection velocity is U0. Notably, a
concentration disturbance is applied to help trigger the fingering phe-
nomenon. In this research, the dissolution of species A is assumed to
modify both the fluid density and viscosity.

FIG. 1. The model schematic: two miscible fluids with viscosity contrast and injec-
tion velocity in porous media.
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III. GOVERNING EQUATIONS

The governing equations for the fluid flow and species transport
are described by the Navier–Stokes equations and the convection–dif-
fusion equation as follows:

$ � u ¼ 0 ;

q0
@u
@t

þ u � $u
� �

¼ �$pþ $ � l$uð Þ þ F ;

@C
@t

þ u � $C ¼ D$2C;

(1)

where u ¼ u; vð Þ is the velocity, q0 is the density, t is the time, p is the
pressure, l ¼ q0� is the fluid dynamic viscosity with � being the fluid
kinematic viscosity, C is the concentration, andD is the diffusion coef-
ficient. F is the force applied to the flow, which is introduced by gravity
difference. According to the Boussinesq approximation, fluid density
is assumed as a constant q0 except in the force term F. The gravity
acceleration term caused by the concentration C is defined as49

F ¼ 0; Fyð Þ ¼ 0; gq0 1þ bCð Þ� �
; (2)

where g is the gravity and b is the concentration expansion coefficient.
Moreover, the fluid viscosity l is also decided by the concentration
evolution. The viscosity is assumed to follow an exponential law with
the local concentration C as50

l ¼ l1exp � C
C0

R

� �
; (3)

where R ¼ lnðl1=l0Þ is the viscosity ratio, and l0 and l1 are the
dynamic viscosities of fluid 1 (C ¼ C0 ¼ 1) and fluid 2 (C ¼ C1 ¼ 0),
respectively. As for the boundary conditions, no-slip and no-flux con-
ditions are applied to the grains inside the system. The lateral bound-
aries of the system are set as periodic. The top boundary is defined by
the prescribed velocity and concentration. The bottom boundary is
defined by the no-slip condition and given concentration. In sum-
mary, these boundary conditions are described as

u xg ; ygð Þ ¼ 0; 0ð Þ; $C xg ; ygð Þ ¼ 0; 0ð Þ;
u 0; yð Þ ¼ u lx; yð Þ; C 0; yð Þ ¼ C lx; yð Þ;
u x; ly
� � ¼ 0;�U0ð Þ; C x; ly

� � ¼ C0;

u x; 0ð Þ ¼ 0; 0ð Þ; $C x; 0ð Þ ¼ 0; 0ð Þ;

(4)

where xg ; ygð Þ is the surface of solid grains and U0 is the injection
velocity of fluid 1.

In order to introduce dimensionless parameters, the characteris-
tic length, velocity, and concentration are selected, respectively, as

L ¼ lx; U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLDC

p
; Cch ¼ C0: (5)

The nondimensional parameters are as

t� ¼ t
L=U

; C� ¼ C
C0

; q� ¼ q� q0
q0b

;

Ra ¼ L3gb C0 � C1ð Þ
�D

; Sc ¼ �

D
; Utop ¼ U0

U
:

(6)

The key parameters in this project are the Rayleigh number Ra, the
viscosity ratio R, the top flow velocity Utop, and the Schmidt number
Sc. The nondimensional injection velocity of the top flow Utop is called
the injection velocity for convenience in Secs. IVA–IVC.

In this work, the multiple-relaxation-time (MRT) LB method is
utilized to solve the above governing equations and boundary condi-
tions.51 The details of the models are shown in the Appendix.

IV. RESULTS AND DISCUSSION

In this part, the density instability with viscosity contrast is simu-
lated for different injection velocities in a homogeneous porous
medium. For the computational domain in Fig. 1, the geometric
parameters are set as lx ¼ 1; ly ¼ 0:672, d ¼ 0:008 06; rx ¼ ry
¼ 0:0181, and the medium porosity is calculated as u ¼ 1
�pd2=2rxry ¼ 0:670. It is worth mentioning that the present pore-
scale study is able to capture representative features, and all typical
phenomena of fingering are observed, including merging, shielding,
tip splitting, and finger reinitiation. Therefore, the simulation results at
pore scales are of relevance at larger scales. In this study, the Schmidt
number is fixed as Sc ¼ 100, and different values of Rayleigh number
Ra, viscosity ratio R, and injection velocity Utop are selected to change
the simulation conditions. After grid convergence tests, a mesh of size
Nx � Ny ¼ 1488� 1000 is utilized in this research. It is noted that all
the simulations use the same initial concentration distribution to
exclude the effects of perturbations.24 Throughout this paper, all the
parameters are set in lattice units. Each test continues until the finger-
ing front (i.e., the front position of fluid 1, lf Þ reaches the position
lf ¼ 0:75ly . More details about model validation can be found in the
supplementary material.

A. General pattern analysis

To get a comprehensive understanding of the density fingering
phenomena with viscosity contrast at the pore scale, simulations of fin-
gering patterns are conducted for different parameters. For illustration,
two sets of simulation cases are discussed: cases I(a)–I(c) without
injection velocity and cases II(a)–II(c) with injection velocity. The
detailed simulation parameters are listed in Table I.

1. Without injection velocity (Utop50)

In cases I(a)–I(c), the injection velocity is excluded from consid-
eration. The Rayleigh number is set as Ra ¼ 109, which is large
enough to trigger the density fingering phenomenon. The viscosity
ratio R is set as 0, 3, and �3 for cases I(a), I(b), and I(c), respectively.
For each case, Fig. 2 shows the contours of density fields q� at different
time instants t�, with each row of contours reaching the same front
position lf .

It is found that all three cases display a classical fingering devel-
opment pattern, regardless of the viscosity contrast value.21,32,42

Initially, the spreading of solute A is dominated by diffusion as a pla-
nar. With the accumulation of A in the top layer, the density difference
between the A-accumulated top layer and the host fresh layer eventu-
ally gets large enough to trigger the onset of tiny fingers. These fingers

TABLE I. Parameters for case I and II in Part A.

Tests
Rayleigh

number Ra
Injection

velocity Utop

Viscosity
ratio R

Cases I(a)–I(c)
109

0 [�3,3]
Cases II(a)–II(c) 10�2 [�3,3]
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keep growing and start to interact nonlinearly with each other. Finally,
after experiencing a merging state, several strong fingers are left to
dominate the flow. Typical phenomena of fingering in miscible dis-
placement are observed in Fig. 2, like dominant fingers’ spreading and
shielding and tip splitting.36

Although these three cases share a similar fingering development
pattern, three differences among them are observed due to varied vis-
cosity ratios. First, finger re-initiation and tip splitting are enhanced in
case I(c), while they are suppressed in case I(b), which are marked by
rectangles and ellipses in Fig. 2, respectively. This stems from the fact
that, as R increases, the displaced fluid (i.e., fluid 2) manifests larger
viscosity and thus suppresses finger re-initiation and tip splitting.
Second, the time period each case takes to reach the same front posi-
tion lf varies. Comparing the non-dimensional time t� for each front
position, it is evident that the ascending R slows down the propagation
of solute A along the direction of gravity. For example, from cases I(c)
via I(a) to I(b), it takes t� ¼ 71; 357 and 834, respectively, for the fin-
gering front to reach the position lf ¼ 0:75ly . This is straightforward
as a larger R represents a more viscous fluid 2, which in turn causes a
larger resistance force as fluid 1 tries to spread into fluid 2. Finally,
with the increase in R, the enhanced accumulation of A in the top
layer is detected, which subsequently brings about the amplified den-
sity jumpDq� and buoyance force F.

After qualitative discussions of similarities and differences
between the three cases I(a)–I(c), quantitative analyses are further set
out to provide a deep understanding of density instability with viscos-
ity contrast. For such a purpose, the horizontally averaged density is
calculated as

q� ¼ 1
lx

ðlx
0

q� dx: (7)

In Fig. 2, the horizontally averaged density q� is plotted on the right
side of each contour field. From profiles of q� in each case, the line
slope [e.g., marked as dyq� at t� ¼ 238 in case I(a)] is found to decrease
with time. This is attributed to the fact that fingering spreads downward
and accelerates the dissolution of species A. In the meantime, as q�
starts to decrease along the y direction (or dyq� is no longer infinite), an
inflection point is observed in each profile of q� [e.g., marked by a trian-
gle at t� ¼ 24 in case I(a)]. Accordingly, the density jump Dq� between
the A-accumulated top layer and the host fresh layer can be determined
from profiles of q� . As denoted in Fig. 2,Dq� is calculated as the density
difference from the inflection point to the host fluid density level. It is
apparent that Dq� determines the buoyance force F and subsequently
the onset and development of density fingering. From Fig. 2, it is con-
firmed that the rise in R causes a growth in Dq� or F. This can be
explained from the aspect of force balance. With the growing R, the
enlarged viscosity force requires a large Dq� or F to be balanced.
The relationship between R and Dq� (or F) can also be understood
from the perspective of Taylor dispersion. Taylor dispersion refers to
the phenomenon of effective mixing and diffusion that occurs in a shear
flow with a concentration gradient.52 In case I, increasing R hinders the
spreading velocity of solute A, which, in turn, weakens the intensity of
Taylor dispersion. The weakened dispersion causes larger concentration
inside the fingers. Therefore, increasing R generates a large Dq�.
However, it is notable that the simulation in this work ends at lf =ly

FIG. 2. Contours of density q� and transversely averaged density q� for cases I: (a) R ¼ 0, (b) R ¼ 3; and (c) R ¼ �3.
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¼ 0:75 with flow dominated by advection, while from a previous
study,52 Taylor dispersion becomes independent of R at the very late
stage when the flow is dominated by dispersion instead of advection.

On the other hand, two important metrics are introduced based
on profiles of q� to quantify the development of density fingering.

First, the fingering front lf is defined as the position where q� ¼ 0:01.
Second, the mixing length (or fingering length) lm is calculated as the
distance between q� ¼ 0:99 and q� ¼ 0:01. Temporal evolutions of
the front position lf =ly and mixing length lm=ly for cases I(a)–I(c) are
depicted in Fig. 3. Each simulation stops when lf =ly ¼ 0:75, and the
corresponding time is termed as the end time, te. In cases I(a)–I(c)
with Utop ¼ 0, te is observed to increase with the growing R, which
identifies the slow spreading of species A. This is expected since the
large R introduces the strong viscous resistance to suppress the finger-
ing development driven by the buoyance force F. As for temporal evo-
lutions of the mixing length lm=ly , profiles are similar to those of lf =ly .
The reason is that, in cases I(a)–I(c) with Utop ¼ 0, no additional force
except for the buoyance force is applied to drive the movement of fluid
1. Therefore, density fingering starts almost from the top boundary
and lm is the same as lf . Moreover, it is observed that, after the initial
diffusion stage, lm changes to grow at an almost constant rate due to
the appearance of density fingering, which is consistent with previous
studies.36,37 Accordingly, as denoted in Fig. 3, the slope of lm during
the fingering development stage is defined as the fingering growth
velocity Um. From profiles of lm, Um is found to have a negative corre-
lation relationship with R in cases I(a)–I(c). This is attributed to the
suppressing effect of large R on the fingering development.

2. With injection velocity (Utop51022)

In cases II(a) and II(b), an additional injection velocity is intro-
duced as Utop ¼ 10�2, while the Rayleigh number and the viscosity
ratio are identical to those of cases I(a)–I(c), namely, Ra ¼ 109 and
R ¼ 0; 3;�3. Similarly, the contours of density fields q� for cases II
are displayed in Fig. 4.

FIG. 3. Temporal evolutions of (a) the front position lf =ly and (b) mixing length
lm=ly for cases I(a)–I(c) with Ra ¼ 109, Utop ¼ 0, and R ¼ 0; 3;�3.

FIG. 4. Contours of density q� and transversely averaged density q� for cases II (a) R ¼ 0, (b) R ¼ 3; and (c) R ¼ �3.
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The fingering development patterns in cases II exhibit a distinct
divergence from those observed in cases I. In case II(a) where R¼ 0,
the system maintains stable throughout the simulation life span.
Conversely, in cases II(b) and II(c) with non-zero R, the onset and
development of density fingering are observed. In case II(b) with a
high viscosity ratio R¼ 3, fingers appear at an early stage. The differ-
ence between cases II(a) and II(b) reveals that fingers in case II(b) are
introduced by the combination of injection velocity and viscosity ratio,
which are thus referred to as viscous fingering. On the other hand, in
case II(c) with a small viscosity ratio R¼�3, the system remains sta-
ble for a long period. Upon the fingering front reaching 0.75 ly , the
flow in case II(c) undergoes instability and produces minuscule fin-
gers, as denoted by dotted circles in Fig. 4. Therefore, upon examining
the contours of R¼�3, 0, and 3, the flow field transitions from an
unstable regime to a stable one and ultimately reverts to an unstable
state. By comparing with cases I, the flow states in cases II indicate
that the injection velocity serves to suppress the development of den-
sity fingering but enhance that of viscous fingering as R > 0.

In addition to fingering patterns, the injection velocity is
observed to accelerate the spreading of solute A. Upon examining the
time instant t� when lf reaches the same position, it is apparent that t�

is significantly smaller in cases II as compared to that in cases I. For
example, it takes t� ¼ 71 in case I(a) but t� ¼ 50 in case II(a) for the
fingering front to reach lf ¼ 0:75ly . In addition, a comparison of
the fluid transport speed among cases II(a)–II(c) demonstrates that
the increasing R decelerates the fluid propagation velocity as R< 0,
which is consistent with cases I. In contrast to cases I, as R increases to
be R> 0, the higher R changes to accelerate fluid transport and the
case II(b) with R ¼ 3 shows the fastest transport velocity among cases
II. This discrepancy is attributed to the fact that the injection velocity
and large viscosity R¼ 3 in case II(b) bring about viscous fingering.
Fingering is known to expedite fluid transport, and therefore, even
though a higher viscosity ratio generates the stronger viscous resis-
tance in case II(b), the intensified spreading by fingering surpasses the
delaying effect induced by the viscous resistance.

Following qualitative discussions of fingering properties in cases
II, quantitative analyses are conducted to comprehend the understand-
ing of density instability with injection velocity. Again, the horizontally
averaged density q� is graphed on the right side of each contour plot.
For each profile of q� in Fig. 4, an inflection point is identified and
then the density jumps Dq� (or the buoyance force F) can be obtained.
Different from cases I, values of Dq� in cases II(a)–II(c) are almost the
same and reach the maximum density jump Dq�m ¼ 1. Although
under Dq�m, density fingering is weak or even disappeared in cases
II(c) and II(a). This verifies that the injection velocity Utop impedes
the effects of F and subsequently suppresses the density fingering
development.

Temporal evolutions of the aforementioned metrics lf and lm are
plotted in Fig. 5 to quantify the fingering development with injection
velocity in cases II. For each test, the simulation ends at te with
lf ¼ 0:75ly . Profiles of lf are observed to increase with time following
a similar trend as those in cases I. Each lf increases progressively until
the end time te. In cases II with Utop ¼ 10�2, as R increases, te is found
to increase when R< 0 but switches to decreases when R> 0.
Different from cases I with the positive correlative between R and te,
this nonmonotonical relationship between R and te in cases II eviden-
ces the enhancing effects of viscous fingering on fluid propagation

velocity in case II (b) with R¼ 3. Another distinction from cases I is
that, driven by the additional Utop, results for lm exhibit a significant
difference from those for lf . In case II(a) (R¼ 0), lm follows a growth
pattern dominated by diffusion with no fingering observed.
Differently, lm for case II(b) (R¼ 3) departs from the diffusive ten-
dency at an early stage and turns to increase rapidly due to the onset
of viscous fingering, whereas lm for case II(c) (R¼�3) does not devi-
ate from the diffusive trend until a very late stage, indicating the weak
density fingering, which is also in good agreement with previous
study.27 Therefore, the largest growth velocity of fingering, Um, among
cases II(a)–II(c) is found in case II(b) with R¼ 3. This is attributed to
the fact that the injection velocity impedes the onset of density finger-
ing but helps to trigger viscous fingering when R> 0.

B. Effects of R and Utop

Following a preliminary analysis of density fingering properties
with viscosity contrast and injection velocity, effects of the two key
parameters (i.e., R and Utop) are further investigated. To this end, a
series of simulations are performed with a fixed Ra ¼ 109 and varying
R and Utop. The simulated density contours at the time instant te
when the fluid front reaches lf ¼ 0:75ly are plotted in Fig. 6(a). These
contours reveal a diverse array of fingering dynamics, including
enhanced fingering, weak fingering, and stable interface. In tests with a
small Utop (e.g., 10�4), the fluid remains unstable for various values of
R and the increasing R suppresses the fingering intensity. However, as
Utop increases to be efficiently large (e.g., 10�2), the fluid displacement
becomes the dominant mechanism, which suppresses the development
of density fingering. Under this condition, the growing R within the
range R< 0 aids in restraining the formation of density fingering and
even yields a stable fluid interface. For instance, in tests with Utop

FIG. 5. Temporal evolutions of (a) front position lf =ly and (b) mixing length lm=ly
for cases II(a)–II(c) with Ra ¼ 109, Utop ¼ 10�2; and R ¼ 0; 3;�3.
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¼ 10�2 and R ¼ 0, �1, the system maintains a stable planar fluid
interface. This phenomenon can be explained by the opposite effects
of viscosity and density contrasts on stability by choosing a favorable
injection velocity.27 In the large-Utop scenario, the density contrast
serves to enhance instability, while the large Utop amplifies viscous
forces and suppresses density instability. Upon Utop reaching a suffi-
ciently large magnitude, the flow can be fully stabilized, and the bound
velocity is defined as the critical velocity, Uc. For example, in test with
R ¼ �1, Uc is located between 10�3 and 10�2, since the flow is fully
stabilized when Utop increases from 10�3 to 10�2. It is notable that Uc

varies with Ra (density contrast), R (viscosity contrast), and time.

However, as R increases to be positive (i.e., R> 0), the combination of
large Utop and R is observed to introduce viscous fingering, as dis-
played in test with Utop ¼ 10�2 and R ¼ 3. On the other hand, at a
fixed R, the increasing Utop is found to hinder density fingering while
triggering viscous fingering if R is efficiently large (i.e., R¼ 3).

Additionally, Fig. 6(b) displays the time te required for the fluid
front to reach the position lf ¼ 0:75ly . A smaller value of te signifies a
faster spreading speed. It is demonstrated that the rise in Utop leads to
a reduction in te, thereby hastening the spreading speed of solute A.
This can be explained by the fact that Utop accelerates the movement
of the displacing fluid 1. In contrast, there is a negative correlation

FIG. 6. (a) Density contours q� when fluid fronts move to lf ¼ 0:75ly , for cases with Ra ¼ 109 and different values of Utop and R. (b) Plots of the end time te as a function of
R for different Utop.
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between R and the spreading speed of A when Utop is relatively small
(i.e., Utop � 10�4). This negative correlation becomes marginal and
even disappears as Utop increases (i.e., Utop � 10�3). For instance,
with the increasing R at Utop ¼ 10�3, te increases at first and reaches
the largest value at R ¼ 0 and turns to decrease after this maximum
point. This is attributed to the appearance of viscous fingering in tests
with large Utop and R.

To quantify the effects of R, the mixing length lm and the growth
velocity of fingering Um at te when the front positions reach lf
¼ 0:75 ly are plotted in Fig. 7 as a function of R for different Utop. In
Fig. 7, the data for Utop ¼ 10�4 is omitted to facilitate readability,
given its close resemblance to that for Utop ¼ 0. The results reveal that
effects of R on fingering properties depend on the magnitude of Utop.
For a small Utop (Utop � 10�3), a negative correlation between lm and
R is evident. However, as Utop increases to Utop ¼ 10�2, lm exhibits a
weak negative association with R as R< 0, but a strong positive corre-
lation with R as R> 0. This stems from the fact that, although the large
Utop or R individually can suppress density fingering, the combination
of these two factors can serve as the driving force for the initiation of
viscous fingering. With regard to Um, as Utop is small (Utop � 10�3), a
negative correlation between Um and R is detected from Fig. 7. This
correlation arises from the fact that the large R tends to postpone the
onset of fingering. However, results at Utop ¼ 10�2 exhibit a nonlinear
association between Um and R. Specifically, Um decreases with the
growing R as R< 0, but Um experiences an increase as R> 0. For
example, the significant rise in Um was detected at R ¼ 3. This nonlin-
ear correlation further corroborates our earlier analysis that the large R
suppresses density fingering, but the large Utop and R can trigger the
appearance of viscous fingering.

Moreover, to quantify the effects of Utop, the mixing length lm
and the growth velocity of fingering Um upon a front position of lf
¼ 0:75 ly are plotted in Fig. 8 as a function of Utop for different R. The
results indicate that an increase in Utop generally leads to a reduction
in lm, which is attributed to the suppressing effect of Utop on density

fingering. The results reveal a negative correlation between Utop and
lm, which further corroborates the previous conclusion that Utop gen-
erally suppresses fingering. On the other hand, the results reveal that
Utop has minimal impact on Um, except in tests involving large Utop

and R. For instance, a considerable surge in Um is detected when Utop

reaches Utop ¼ 10�2 for R ¼ 3. This phenomenon can be explained
by the driving effect of large Utop and R on the appearance of viscous
fingering.

In summary, the increase in Utop or R individually is found to
suppress density fingering. However, when Utop and R grow to a suffi-
ciently high level, they can jointly act as the driving force for viscous
fingering.

C. Stability analysis

Following discussions on effects of R and Utop, further simula-
tions are undertaken in this section to investigate flow stability.
Simulations are conducted for Ra ¼ 109 (case III), Ra ¼ 108 (case
IV), and Ra ¼ 107 (case V), with Utop ¼ 0–10�2 and R ¼ �7–7, with
simulation parameters being listed in Table II.

To quantitatively illustrate the fingering phenomenon, Fig. 9
demonstrates the lm and te contour plots in the Utop-R plane for cases
III when fluid fronts move to lf ¼ 0:75ly . Based on the values of lm, te,
and fingering patterns, the parameter space is divided into five distinct

FIG. 7. Plots of (a) the mixing length lm and (b) the growth velocity of fingering Um

when lf ¼ 0:75 ly as a function of R for different Utop.

FIG. 8. Plots of (a) the mixing length lm and (b) the growth velocity of fingering Um

when lf ¼ 0:75 ly as a function of Utop for different R.

TABLE II. Parameters for cases III, IV, and V in Part C.

Tests
Rayleigh

number Ra
Injection

velocity Utop

Viscosity
ratio R

Case III 109 [0,10�2] [�7,7]
Case IV 108 [0,10�2] [�7,7]
Case V 107 [0,10�2] [�7,7]
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regimes: viscosity-suppressed (I), viscosity-enhanced (II), viscosity-
unstable (III), displacement-suppressed (IV), and stable (V). At low
Utop values, the flow is dominated by the buoyance force F, and thus
the parameter space is referred to as the gravity-dominated region.
The gravity-dominated area is further divided into viscosity-
suppressed (I) and viscosity-enhanced (II) regimes according to the
value of R. In the viscosity-suppressed regime I, a relatively high R
shortens the fingering length lm and prolongs the duration of fingering
development (i.e., te), hence suppressing fingering in area I.
Conversely, in the viscosity-enhanced regime II, a small R enhances
density fingering, resulting in large lm and small te. As Utop increases,
the displacement effect gradually becomes dominant in the flow, and
the parameter space is defined as the displacement-dominated area.
Although Utop suppresses density fingering to some extent, it acts as a
driving force for viscous fingering. As a result, the gravity-dominated
area can be divided into three regimes, namely, viscosity-unstable (III),
displacement-suppressed (IV), and stable (V) regimes. In the
viscosity-unstable regime III, Utop and R are sufficiently large to cause

viscous fingering. Consequently, the large lm and small te are observed
in area III. In the displacement-suppressed regime IV, density finger-
ing is suppressed by the moderate Utop. In the stable regime V, the
large Utop inhibits density fingering, while the moderate R is inade-
quate for inducing viscous fingering. The combination of these two
factors results in a stable flow. The fingering patterns corresponding to
regions I–V are depicted in Fig. 9(c).

After dividing the parameter space into five regimes according to
the flow stability for cases III, similar analysis is conducted to summa-
rize the stable and unstable regions for cases IV (Ra ¼ 108) and cases
V (Ra ¼ 107). To quantitatively present the flow stability, the fingering
length lm=ly at te (i.e., lf ¼ 0:75ly) is graphed against R on the x axis,
Utop on the y axis, and lm=ly on the z axis in Fig. 10. The overall flow
instability increases with larger values of lm=ly . The aforementioned
five regimes can be identified generally for other values of Ra. In addi-
tion, Fig. 10 also confirms the effects of Utop and R that the increasing
Utop or R individually suppresses density fingering, while they together
can gradually drive viscous fingering.

FIG. 9. Contours of (a) the mixing length lm and (b) end time te when fluid fronts move to lf ¼ 0:75ly , in the Utop-R plane for case III with Ra ¼ 109. Five distinct regimes are
classified as: viscosity-suppressed (I), viscosity-enhanced (II), viscosity-unstable (III), displacement-suppressed (IV), and stable (V). (c) Corresponding density contours are
presented to illustrate fingering patterns under five regimes.
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Moreover, a close inspection of the flow regimes in cases III–V
reveals the effects of Ra on the flow stability. As Ra decreases, the sta-
ble regime V expands in the parameter space, while the gravity-
dominated regimes I and II contract. This is attributed to the fact that
the reduced buoyance force F with the decreasing Ra degrades the
density fingering intensity. Specifically, as Ra decreases from 109 to
108, density fingering is weakened and thus part of the initially unsta-
ble regimes I and II become stabilized.

V. CONCLUSIONS

In this work, a multiple-relaxation-time lattice Boltzmann
method is utilized to study the displacements between two miscible
and incompressible fluids in porous media at the pore scale.
Considering the coexistence of interface instabilities (i.e., density fin-
gering and viscous fingering), simulations are conducted for different
values of Rayleigh number Ra, viscosity ratio R, and injected velocity
Utop. Initially, the general fingering dynamics are discussed in cases
without or with Utop. From the perspective of fingering development,
the flow follows a similar route from the diffusion-dominated stage
into the unstable fingering stage. For a fixed Ra, the density
fingering intensity is found to be attenuated by the growing R or Utop

due to the enhanced viscous resistance or displacement magnitude.
Consequently, a large Utop in conjunction with a moderate R can
effectively inhibit the onset of density fingering and introduce a stable
flow regime. Notably, with the continuous increase in both Utop and
R, these two parameters gradually facilitate the development of viscous
fingering. In addition, the rise in Ra is shown to amplify the buoyance
force and subsequently intensity of the density fingering. These finger-
ing phenomena are investigated quantitatively by evaluating the fin-
gering development time period te, density jump Dq, front position lf ,
mixing length lm; and fingering growth velocity Um. Finally, by com-
paring values of lm and te for each fixed Ra, five flow patterns are
classified as viscosity-suppressed (I), viscosity-enhanced (II), viscosity-
unstable (III), displacement-suppressed (IV), and stable (V) regimes.

This classification depends on the relative values of Utop and R.
Moreover, a three-dimensional phase diagram spanned by Ra, Utop;
and R is plotted, which demonstrates the distributions and parameter
ranges of the above five flow patterns.

Based on the above simulations and discussions, R, Utop; and Ra
are proven to have complex impacts on the interface instabilities,
thereby influencing the spreading fluids. These findings have profound
implications for improving the efficiency of CO2 capture and storage.
Due to the limitation of the 2D system adopted, the porosity of the
medium is larger than that of the realistic 3D system. To further
advance this field of study, future research should be focused on the
mixing process with reactions and realistic porous media in 3D.

SUPPLEMENTARY MATERIAL

See the supplementary material for the validation of the multiple-
relaxation-time lattice Boltzmann method for density instability with
viscosity contrast.
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APPENDIX: NUMERICAL METHOD

The evolution equations of the particle distribution function
in the MRT LB model for the governing equations can be written
as53–55

FIG. 10. Three-dimensional plotting of fingering length lm=ly in the Utop-R plane for
Ra ¼ 107, 108, and 109 (cases V, IV, and III) with five distinct regimes labeled for
Ra ¼ 109.
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fi x þ eidt ; t þ dtð Þ � fi x; tð Þ ¼ � M�1SMð Þij fj x; tð Þ � fj
eq x; tð Þ� �

þ dt M�1 I � 0:5Sð ÞM
� �

ijF j; (A1)

gi x þ eidt ; t þ dtð Þ � gi x; tð Þ ¼ � M�1SCMð Þij gj x; tð Þ � gjeq x; tð Þ� �
;

(A2)

for i; j ¼ 0; 1;…; 8 representing discrete velocity directions, where
fi x; tð Þ and gi x; tð Þ are distribution functions at location x and time
t for the fluid density and the concentration, respectively, ei is the
discrete velocity and dt is the time step. The equilibrium distribu-
tion functions are defined as56

f eqi ¼ wi qp þ q0
u � ei
c2s

þ u � eið Þ2
2c4s

� u � u
2c2s

 ! !
; (A3)

geqi ¼ wiC 1þ u � ei
c2s

þ u � eið Þ2
2c4s

� u � u
2c2s

 !
; (A4)

where wi is the weights specified to the chosen velocity set, and cs is
the lattice sound velocity. qp is a variable related to the fluid pres-
sure as p ¼ c2sqp, and q0 is the fluid density. The distribution func-
tion for the force F is defined as

F i ¼ wi
F � ei
c2s

þ u � eið Þ F � eið Þ
c4s

� u � F
c2s

" #
: (A5)

The transformation matrixM for the D2Q9 model is

M ¼

1 1 1

�4 �1 �1

4 �2 �2

1 1 1

�1 �1 2

�2 �2 1

1 1 1

2 2 2

1 1 1
0 1 0

0 �2 0

0 0 1

�1 0 1

2 0 1

0 �1 1

�1 �1 1

�1 �1 1

1 �1 �1
0 0 �2

0 1 �1

0 0 0

0 2 1

1 �1 0

0 0 1

1 �1 �1

0 0 0

�1 1 �1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: (A6)

This matrix maps distribution functions f and g to the moment
space f̂ ¼ M � f and ĝ ¼ M � g , respectively. Now, the evolution
equations become

f̂ x þ eidt ; t þ dtð Þ � f̂ x; tð Þ ¼ � S f̂ x; tð Þ � f̂
eq

x; tð Þ
h i

þ dt I � S
2

� �
F̂ ; (A7)

ĝ x þ eidt ; t þ dtð Þ � ĝ x; tð Þ ¼ �SC ĝ x; tð Þ � ĝ eq x; tð Þ� �
; (A8)

where S and SC are the diagonal relaxation factor matrices for f̂ and
ĝ , respectively. The equilibrium distribution functions in the
moment space are described as

f̂
eq ¼ qp;�2qp þ 3q0u

2;qp � 3q0u
2; q0u;�q0u;

	
q0v;�q0v; q0 u2 � v2ð Þ; q0uv



; (A9)

ĝ eq ¼ C 1;�2þ 3u2; 1� 3u2; u;�u; v;�v; u2 � v2; uvð Þ: (A10)

The forcing moments F̂ are described as

F̂ ¼ 0; 6u � F;�6u � F; Fx;�Fx; Fy;�Fy; 2 uFx � vFyð Þ; uFy þ vFxð Þ:
(A11)

The macroscopic fluid density, velocity, and concentration can be
derived from the distribution functions as

qp ¼
X
i

fi; u ¼
X
i

eifi þ 0:5dtF

 !�
q0; C ¼

X
i

gi: (A12)

Note that here in LB equations, the relaxation times s and sc can be
derived from the Chapman–Enskog analysis as57

� ¼ c2s s� 0:5ð Þdt ; D ¼ c2s sc � 0:5ð Þdt : (A13)

As for the boundary conditions, the non-equilibrium extrapolation
method is utilized for the top and bottom flows to realize the pre-
scribed velocity and concentration56

fi x; tð Þ ¼ f eqi x; tð Þ þ fi xf ; tð Þ � f eqi xf ; tð Þ; (A14)

gi x; tð Þ ¼ geqi x; tð Þ þ gi xf ; tð Þ � geqi xf ; tð Þ; (A15)

where xf denotes the adjacent location with known distribution
functions next to the boundaries. For the no-slip and no-flux
boundary conditions at the solid grain surface in porous media, the
halfway bounce-back method is utilized as58

fi x; t þ dtð Þ ¼ f 0i x; tð Þ; (A16)

g i x; t þ dtð Þ ¼ g 0i x; tð Þ; (A17)

where ei ¼ �ei, with ei pointing to the solid grains, and f 0i x; tð Þ and
g 0i x; tð Þ representing the post-collision distribution functions.
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