178 research outputs found

    Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids.

    Get PDF
    We identified the most popular electronic cigarette (EC) refill fluids using an Internet survey and local and online sales information, quantified their flavor chemicals, and evaluated cytotoxicities of the fluids and flavor chemicals. "Berries/Fruits/Citrus" was the most popular EC refill fluid flavor category. Twenty popular EC refill fluids were purchased from local shops, and the ingredient flavor chemicals were identified and quantified by gas chromatography-mass spectrometry. Total flavor chemical concentrations ranged from 0.6 to 27.9 mg/ml, and in 95% of the fluids, total flavor concentration was greater than nicotine concentration. The 20 most popular refill fluids contained 99 quantifiable flavor chemicals; each refill fluid contained 22 to 47 flavor chemicals, most being esters. Some chemicals were found frequently, and several were present in most products. At a 1% concentration, 80% of the refill fluids were cytotoxic in the MTT assay. Six pure standards of the flavor chemicals found at the highest concentrations in the two most cytotoxic refill fluids were effective in the MTT assay, and ethyl maltol, which was in over 50% of the products, was the most cytotoxic. These data show that the cytotoxicity of some popular refill fluids can be attributed to their high concentrations of flavor chemicals

    High concentrations of flavor chemicals are present in electronic cigarette refill fluids.

    Get PDF
    We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health

    Ultrasonic Cigarettes: Chemicals and Cytotoxicity Are Similar to Heated-Coil Pod-Style Electronic Cigarettes.

    Get PDF
    Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants ( Blueberry Ice, Watermelon Ice, Green Mint, and Polar Mint ) were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (\u3e1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were /day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes

    Ethyl Maltol, Vanillin, Corylone and other Conventional Confectionery-related Flavour Chemicals Dominate in Some E-cigarette Liquids Labelled ‘tobacco’ flavoured

    Get PDF
    Background The increased popularity of electronic cigarettes (e-cigarettes) has been linked to the abundance of flavoured products that are attractive to adolescents and young adults. In the last decade, e-cigarette designs have evolved through four generations that include modifications in battery power, e-cigarette liquid (e-liquid) reservoirs and atomiser units. E-liquids have likewise evolved in terms of solvent use/ratios, concentration and number of flavour chemicals, use of nicotine salts and acids, the recent increased use of synthetic cooling agents and the introduction of synthetic nicotine. Our current objective was to evaluate and compare the evolving composition of tobacco-flavoured e-liquids over the last 10 years. Methods Our extensive database of flavour chemicals in e-liquids was used to identify trends and changes in flavour chemical composition and concentrations. Results Tobacco-flavoured products purchased in 2010 and 2011 generally had very few flavour chemicals, and their concentrations were generally very low. In tobacco-flavoured refill fluids purchased in 2019 and Puff Bar Tobacco e-cigarettes, the total number and concentration of flavour chemicals were higher than expected. Products with total flavour chemicals \u3e10 mg/mL contained one to five dominant flavour chemicals (\u3e1 mg/mL). The most frequently used flavour chemicals in tobacco e-liquids were fruity and caramellic. Conclusions There is a need for continuous surveillance of e-liquids, which are evolving in often subtle and harmful ways. Chemical constituents of tobacco flavours should be monitored as they clearly can be doctored by manufacturers to have a taste that would appeal to young users

    Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival

    Get PDF
    The Pit1-Oct1-Unc86 domain (POU domain) transcription factor Brn3a controls sensory neuron survival by regulating the expression of Trk receptors and members of the Bcl-2 family. Loss of Brn3a leads to a dramatic increase in apoptosis and severe loss of neurons in sensory ganglia. Although recent evidence suggests that Brn3a-mediated transcription can be modified by additional cofactors, the exact mechanisms are not known. Here, we report that homeodomain interacting protein kinase 2 (HIPK2) is a pro-apoptotic transcriptional cofactor that suppresses Brn3a-mediated gene expression. HIPK2 interacts with Brn3a, promotes Brn3a binding to DNA, but suppresses Brn3a-dependent transcription of brn3a, trkA, and bcl-xL. Overexpression of HIPK2 induces apoptosis in cultured sensory neurons. Conversely, targeted deletion of HIPK2 leads to increased expression of Brn3a, TrkA, and Bcl-xL, reduced apoptosis and increases in neuron numbers in the trigeminal ganglion. Together, these data indicate that HIPK2, through regulation of Brn3a-dependent gene expression, is a critical component in the transcriptional machinery that controls sensory neuron survival

    Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo

    Get PDF
    The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90

    In Vivo RNAi Screening Identifies Regulators of Actin Dynamics as Key Determinants of Lymphoma Progression

    Get PDF
    April 1, 2010Mouse models have markedly improved our understanding of cancer development and tumor biology. However, these models have shown limited efficacy as tractable systems for unbiased genetic experimentation. Here, we report the adaptation of loss-of-function screening to mouse models of cancer. Specifically, we have been able to introduce a library of shRNAs into individual mice using transplantable Eμ-myc lymphoma cells. This approach has allowed us to screen nearly 1,000 genetic alterations in the context of a single tumor-bearing mouse. These experiments have identified a central role for regulators of actin dynamics and cell motility in lymphoma cell homeostasis in vivo. Validation experiments confirmed that these proteins represent bona fide lymphoma drug targets. Additionally, suppression of two of these targets, Rac2 and twinfilin, potentiated the action of the front-line chemotherapeutic vincristine, suggesting a critical relationship between cell motility and tumor relapse in hematopoietic malignancies.National Institutes of Health (U.S.) (RO1 CA128803-01)Massachusetts Institute of Technology. Dept. of Biology (Training Grant)Massachusetts Institute of Technology. Undergraduate Research Opportunities ProgramNational Cancer Institute (U.S.). Integrative Cancer Biology Program (Grant 1-U54-CA112967
    • …
    corecore