724 research outputs found

    The effect of Cr impurity to superconductivity in electron-doped BaFe2-xNixAs2

    Full text link
    We use transport and magnetization measurements to study the effect of Cr-doping to the phase diagram of the electron-doped superconducting BaFe2-xNixAs2 iron pnictides. In principle, adding Cr to electron-doped BaFe2-xNixAs2 should be equivalent to the effect of hole-doping. However, we find that Cr doping suppresses superconductivity via impurity effect, while not affecting the normal state resistivity above 100 K. We establish the phase diagram of Cr-doped BaFe2-x-yNixCryAs2 iron pnictides, and demonstrate that Cr-doping near optimal superconductivity restore the long-range antiferromagnetic order suppressed by superconductivity.Comment: 10 pages, 5 figure

    Doping evolution of antiferromagnetism and transport properties in the non-superconducting BaFe2-2xNixCrxAs2

    Get PDF
    We report elastic neutron scattering and transport measurements on the Ni and Cr equivalently doped iron pnictide BaFe2βˆ’2x_{2-2x}Nix_{x}Crx_{x}As2_{2}. Compared with the electron-doped BaFe2βˆ’x_{2-x}Nix_{x}As2_{2}, the long-range antiferromagnetic (AF) order in BaFe2βˆ’2x_{2-2x}Nix_{x}Crx_{x}As2_{2} is gradually suppressed with vanishing ordered moment and N\'{e}el temperature near x=0.20x= 0.20 without the appearance of superconductivity. A detailed analysis on the transport properties of BaFe2βˆ’x_{2-x}Nix_{x}As and BaFe2βˆ’2x_{2-2x}Nix_{x}Crx_{x}As2_{2} suggests that the non-Fermi-liquid behavior associated with the linear resistivity as a function of temperature may not correspond to the disappearance of the static AF order. From the temperature dependence of the resistivity in overdoped compounds without static AF order, we find that the transport properties are actually affected by Cr impurity scattering, which may induce a metal-to-insulator crossover in highly doped BaFe1.7βˆ’y_{1.7-y}Ni0.3_{0.3}Cry_{y}As2_{2}.Comment: 10 pages, 12 figure

    Effect of hydrogen sulfide on PC12 cell injury induced by high ATP concentration

    Get PDF
    Purpose: To investigate the potential protective effect of hydrogen sulfide against neural cell damage induced by a high-concentration of adenosine triphosphate (ATP).Methods: PC12 cells were incubated with ATP in order to induce cell damage. The extracellular level of H2S and protein expression of cystathionine-Ξ²-synthase (CBS) were determined. The PC12 cells pretreated with NaHS, aminooxyacetic acid (AOAA) and KN-62, prior to further incubation with ATP, and the effect of the treatments on cell viability was investigated.Results: High-concentration ATP induced cell death in PC12 cells, and this was accompanied by markedly increased contents of extracellular H2S and CBS expression (p < 0.05). The ATP-induced cytotoxicity was significantly compromised after pretreatment with H2S. (p < 0.05). The viability of PC12 cells pretreated with NaHS and AOAA was significantly higher than that of PC12 cells treated with ATP alone. In addition, the viability of ATP-treated PC12 cells was further markedly increased after pretreatment with NaHS and KN-62 (p < 0.05).Conclusion: ATP induced a concentration- and time-dependent cytotoxicity in PC12 cells via theendogenous H2S/CBS system. Supplementation with exogenous H2S mitigated the cell damageinduced by high concentration of ATP via a specific mechanism which may be specifically related to P2X7R

    Characterizing and Detecting WebAssembly Runtime Bugs

    Get PDF
    WebAssembly (abbreviated WASM) has emerged as a promising language of the Web and also been used for a wide spectrum of software applications such as mobile applications and desktop applications. These applications, named as WASM applications, commonly run in WASM runtimes. Bugs in WASM runtimes are frequently reported by developers and cause the crash of WASM applications. However, these bugs have not been well studied. To fill in the knowledge gap, we present a systematic study to characterize and detect bugs in WASM runtimes. We first harvest a dataset of 311 real-world bugs from hundreds of related posts on GitHub. Based on the collected high-quality bug reports, we distill 31 bug categories of WASM runtimes and summarize their common fix strategies. Furthermore, we develop a pattern-based bug detection framework to automatically detect bugs in WASM runtimes. We apply the detection framework to seven popular WASM runtimes and successfully uncover 60 bugs that have never been reported previously, among which 13 have been confirmed and 9 have been fixed by runtime developers

    Tracking the nematicity in cuprate superconductors: a resistivity study under uniaxial pressure

    Full text link
    Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been suggested that the rotational symmetry is broken in this state and may result in a nematic phase transition, whose temperature seems to coincide with the onset temperature of the pseudogap state Tβˆ—T^* around optimal doping level, raising the question whether the pseudogap results from the establishment of the nematic order. Here we report results of resistivity measurements under uniaxial pressure on several hole-doped cuprates, where the normalized slope of the elastoresistivity ΞΆ\zeta can be obtained as illustrated in iron-based superconductors. The temperature dependence of ΞΆ\zeta along particular lattice axis exhibits kink feature at TkT_{k} and shows Curie-Weiss-like behavior above it, which may suggest a spontaneous nematic transition. While TkT_{k} seems to be the same as Tβˆ—T^* around the optimal doping and in the overdoped region, they become very different in underdoped La2βˆ’x_{2-x}Srx_{x}CuO4_4. Our results suggest that the nematic order, if indeed existing, is an electronic phase within the pseudogap state.Comment: 6 pages, 4 figure
    • …
    corecore