59,281 research outputs found
Structural graph matching using the EM algorithm and singular value decomposition
This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method
Critical Relaxation and Critical Exponents
Dynamic relaxation of the XY model and fully frustrated XY model quenched
from an initial ordered state to the critical temperature or below is
investigated with Monte Carlo methods. Universal power law scaling behaviour is
observed. The dynamic critical exponent and the static exponent are
extracted from the time-dependent Binder cumulant and magnetization. The
results are competitive to those measured with traditional methods
Probing the QCD Critical Point with Higher Moments of Net-proton Multiplicity Distributions
Higher moments of event-by-event net-proton multiplicity distributions are
applied to search for the QCD critical point in the heavy ion collisions. It
has been demonstrated that higher moments as well as moment products are
sensitive to the correlation length and directly connected to the thermodynamic
susceptibilities computed in the Lattice QCD and Hadron Resonance Gas (HRG)
model. In this paper, we will present measurements for kurtosis (),
skewness () and variance () of net-proton multiplicity
distributions at the mid-rapidity () and GeV/ for
Au+Au collisions at =19.6, 39, 62.4, 130 and 200 GeV, Cu+Cu
collisions at =22.4, 62.4 and 200 GeV, d+Au collisions at
=200 GeV and p+p collisions at =62.4 and 200 GeV.
The moment products and of net-proton
distributions, which are related to volume independent baryon number
susceptibility ratio, are compared to the Lattice QCD and HRG model
calculations. The and of net-proton
distributions are consistent with Lattice QCD and HRG model calculations at
high energy, which support the thermalization of the colliding system.
Deviations of and for the Au+Au collisions at
low energies from HRG model calculations are also observed.Comment: 10 pages, 8 figures, Proceedings of 27th Winter Workshon on Nuclear
Dynamics. Feb. 6-13 (2011
Optimal Scheduling and Power Allocation for Two-Hop Energy Harvesting Communication Systems
Energy harvesting (EH) has recently emerged as a promising technique for
green communications. To realize its potential, communication protocols need to
be redesigned to combat the randomness of the harvested energy. In this paper,
we investigate how to apply relaying to improve the short-term performance of
EH communication systems. With an EH source and a non-EH half-duplex relay, we
consider two different design objectives: 1) short-term throughput
maximization; and 2) transmission completion time minimization. Both problems
are joint scheduling and power allocation problems, rendered quite challenging
by the half-duplex constraint at the relay. A key finding is that directional
water-filling (DWF), which is the optimal power allocation algorithm for the
single-hop EH system, can serve as guideline for the design of two-hop
communication systems, as it not only determines the value of the optimal
performance, but also forms the basis to derive optimal solutions for both
design problems. Based on a relaxed energy profile along with the DWF
algorithm, we derive key properties of the optimal solutions for both problems
and thereafter propose efficient algorithms. Simulation results will show that
both scheduling and power allocation optimizations are necessary in two-hop EH
communication systems.Comment: Submitted to IEEE Transaction on Wireless Communicatio
Training Optimization for Energy Harvesting Communication Systems
Energy harvesting (EH) has recently emerged as an effective way to solve the
lifetime challenge of wireless sensor networks, as it can continuously harvest
energy from the environment. Unfortunately, it is challenging to guarantee a
satisfactory short-term performance in EH communication systems because the
harvested energy is sporadic. In this paper, we consider the channel training
optimization problem in EH communication systems, i.e., how to obtain accurate
channel state information to improve the communication performance. In contrast
to conventional communication systems, the optimization of the training power
and training period in EH communication systems is a coupled problem, which
makes such optimization very challenging. We shall formulate the optimal
training design problem for EH communication systems, and propose two solutions
that adaptively adjust the training period and power based on either the
instantaneous energy profile or the average energy harvesting rate. Numerical
and simulation results will show that training optimization is important in EH
communication systems. In particular, it will be shown that for short block
lengths, training optimization is critical. In contrast, for long block
lengths, the optimal training period is not too sensitive to the value of the
block length nor to the energy profile. Therefore, a properly selected fixed
training period value can be used.Comment: 6 pages, 5 figures, Globecom 201
- …