800 research outputs found

    Multiplicity Fluctuations in Limited Segments of Momentum Space in Statistical Models

    Full text link
    Multiplicity fluctuations in limited segments of momentum space are calculated for a classical pion gas within the statistical model. Results for the grand canonical, canonical, and micro-canonical ensemble are obtained, compared and discussed. We demonstrate that even in the large volume limit correlations between macroscopic subsystems due to energy and momentum conservation persist. Based on the micro-canonical formulation we make qualitative predictions for the rapidity and transverse momentum dependence of multiplicity fluctuations. The resulting effects are of similar magnitude as the predicted enhancement due to a phase transition from a quark-gluon plasma to a hadron gas phase, or due to the critical point of strongly interacting matter, and qualitatively agree with recently published preliminary multiplicity fluctuation data of the NA49 SPS experiment.Comment: 23 pages, 4 figure

    Multiplicity fluctuations in relativistic nuclear collisions: statistical model versus experimental data

    Get PDF
    The multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. The microscopic correlator method is used to enforce conservation of three charges - baryon number, electric charge, and strangeness - in the canonical ensemble. In addition, in the micro-canonical ensemble energy conservation is included. An analytical method is used to account for resonance decays. The multiplicity distributions and the scaled variances for negatively, positively, and all charged hadrons are calculated along the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Predictions obtained within different statistical ensembles are compared with the preliminary NA49 experimental results on central Pb+Pb collisions in the SPS energy range. The measured fluctuations are significantly narrower than the Poisson ones and clearly favor expectations for the micro-canonical ensemble. Thus this is a first observation of the recently predicted suppression of the multiplicity fluctuations in relativistic gases in the thermodynamical limit due to conservation laws.Comment: 27 pages, 9 figures, corrected reference

    Multiplicity fluctuations in relativistic nuclear collisions

    Full text link
    Multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. In the canonical ensemble conservation of three charges (baryon number, electric charge, and strangeness) is enforced. In addition, in the micro-canonical ensemble energy conservation is included. An analytical method is used to account for resonance decays. Multiplicity distributions and scaled variances for negatively charged hadrons are presented along the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Predictions obtained within different statistical ensembles are compared with preliminary NA49 experimental results on central Pb+Pb collisions in the SPS energy range. The measured fluctuations are significantly narrower than a Poisson reference distribution, and clearly favor expectations for the micro-canonical ensemble.Comment: 6 pages, 3 figure

    Particle number fluctuations in nuclear collisions within excluded volume hadron gas model

    Get PDF
    The multiplicity fluctuations are studied in the van der Waals excluded volume hadron-resonance gas model. The calculations are done in the grand canonical ensemble within the Boltzmann statistics approximation. The scaled variances for positive, negative and all charged hadrons are calculated along the chemical freeze-out line of nucleus-nucleus collisions at different collision energies. The multiplicity fluctuations are found to be suppressed in the van der Waals gas. The numerical calculations are presented for two values of hard-core hadron radius, r=0.3r=0.3 fm and 0.5 fm, as well as for the upper limit of the excluded volume suppression effects.Comment: 19 pages, 4 figure

    Multiplicity Fluctuations in Nucleus-Nucleus Collisions: Dependence on Energy and Atomic Number

    Full text link
    Event-by-event multiplicity fluctuations in central C+C, S+S, In+In, and Pb+Pb as well as p+p collisions at bombarding energies from 10 to 160 AGeV are studied within the HSD and UrQMD microscopic transport approaches. Our investigation is directly related to the future experimental program of the NA61 Collaboration at the SPS for a search of the QCD critical point. The dependence on energy and atomic mass number of the scaled variances for negative, positive, and all charged hadrons is presented and compared to the results of the model of independent sources. Furthermore, the nucleus-nucleus results from the transport calculations are compared to inelastic proton-proton collisions for reference. We find a dominant role of the participant number fluctuations in nucleus-nucleus reactions at finite impact parameter bb. In order to reduce the influence of the participant numbers fluctuations on the charged particle multiplicity fluctuations only the most central events have to be selected. Accordingly, the samples of the 1% most central nucleus-nucleus collisions with the largest numbers of the projectile participants are studied. The results are compared with those for collisions at zero impact parameter. A strong influence of the centrality selection criteria on the multiplicity fluctuations is pointed out. Our findings are essential for an optimal choice of colliding nuclei and bombarding energies for the experimental search of the QCD critical point.Comment: 26 pages, 12 figures, extended version, to be published in Phys. Rev.

    Energy dependence of transverse mass spectra of kaons produced in p+p and p+pbar interactions.A compilation

    Get PDF
    The data on m_T spectra of K0S K+ and K- mesons produced in all inelastic p+p and p+pbar interactions in the energy range sqrt(s)NN=4.7-1800GeV are compiled and analyzed. The spectra are parameterized by a single exponential function, dN/(m_T*dm_T)=C exp(-m_T/T), and the inverse slope parameter T is the main object of study. The T parameter is found to be similar for K0S, K+ and K- mesons. It increases monotonically with collision energy from T~30MeV at sqrt(s)NN=4.7GeV to T~220MeV at sqrt(s)NN=1800GeV. The T parameter measured in p+p and p+pbar interactions is significantly lower than the corresponding parameter obtained for central Pb+Pb collisions at all studied energies. Also the shape of the energy dependence of TT is different for central Pb+Pb collisions and p+p(pbar) interactions.Comment: more differential analysis adde

    Strangeness production time and the K+/pi+ horn

    Get PDF
    We construct a hadronic kinetic model which describes production of strange particles in ultrarelativistic nuclear collisions in the energy domain of SPS. We test this model on description of the sharp peak in the excitation function of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces these data rather well. The model thus must be tested on other types of data in order to verify the hypothesis that deconfinement sets in at lowest SPS energies.Comment: proceedings of Hot Quarks 0

    Strangeness and threshold of phase changes

    Full text link
    We explore entropy and strangeness as signature of QGP for top AGS energy and the energy scan at SPS. We find that the hadronization dynamics changes between 20 and 30 AA GeV projectile energy. The high energy results are consistent with QGP.Comment: Presented at SQM07, to appear in JPG special issu

    Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions at the CERN SPS

    Get PDF
    Multiplicity fluctuations of positively, negatively and all charged hadrons in the forward hemisphere were studied in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV. The multiplicity distributions and their scaled variances are presented in dependence of collision energy as well as of rapidity and transverse momentum. The distributions have bell-like shape and their scaled variances are in the range from 0.8 to 1.2 without any significant structure in their energy dependence. No indication of the critical point in fluctuations are observed. The string-hadronic model UrQMD significantly overpredicts the mean, but approximately reproduces the scaled variance of the multiplicity distributions. The predictions of the statistical hadron-resonance gas model obtained within the grand-canonical and canonical ensembles disagree with the measured scaled variances. The narrower than Poissonian multiplicity fluctuations measured in numerous cases may be explained by the impact of conservation laws on fluctuations in relativistic systems.Comment: 26 pages, 34 figures, updated version including referee comment

    Search for the QCD critical point in nuclear collisions at the CERN SPS

    Get PDF
    Pion production in nuclear collisions at the SPS is investigated with the aim to search, in a restricted domain of the phase diagram, for power-laws in the behavior of correlations which are compatible with critical QCD. We have analyzed interactions of nuclei of different size (p+p, C+C, Si+Si, Pb+Pb) at 158AA GeV adopting, as appropriate observables, scaled factorial moments in a search for intermittent fluctuations in transverse dimensions. The analysis is performed for π+π\pi^+\pi^- pairs with invariant mass very close to the two-pion threshold. In this sector one may capture critical fluctuations of the sigma component in a hadronic medium, even if the σ\sigma-meson has no well defined vacuum state. It turns out that for the Pb+Pb system the proposed analysis technique cannot be applied without entering the invariant mass region with strong Coulomb correlations. As a result the treatment becomes inconclusive in this case. Our results for the other systems indicate the presence of power-law fluctuations in the freeze-out state of Si+Si approaching in size the prediction of critical QCD.Comment: 31 pages, 11 figure
    corecore