94 research outputs found

    Smoking Cessation in Mice Does Not Switch off Persistent Lung Inflammation and Does Not Restore the Expression of HDAC2 and SIRT1

    Get PDF
    Once COPD is established, pulmonary lesions can only progress and smoking cessation by itself is not sufficient to switch off persistent lung inflammation. Similarly, in former-smoker mice, neutrophil inflammation persists and lung lesions undergo progressive deterioration. The molecular mechanisms underlying disease progression and the inefficiency of smoking cessation in quenching neutrophilic inflammation were studied in male C57 Bl/6 mice after 6 months of rest from smoking cessation. As compared with the mice that continued to smoke, the former-smoker mice showed reduced expression of histone deacetylases HDAC2 and SIRT1 and marked expression of p-p38 MAPK and p-Ser10. All these factors are involved in corticosteroid insensitivity and in perpetuating inflammation. Former-smoker mice do show persistent lung neutrophilic influx and a high number of macrophages which account for the intense staining in the alveolar structures of neutrophil elastase and MMP-9 (capable of destroying lung scaffolding) and 8-OHdG (marker of oxidative stress). "Alarmins" released from necrotic cells together with these factors can sustain and perpetuate inflammation after smoking cessation. Several factors and mechanisms all together are involved in sustaining and perpetuating inflammation in former-smoker mice. This study suggests that a better control of COPD in humans may be achieved by precise targeting of the various molecular mechanisms associated with different phenotypes of disease by using a cocktail of drug active toward specific molecules

    Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung

    Get PDF
    Background: Ajulemic acid (AjA) is a synthetic analogue of tetrahydrocannabinol that can prevent and limit progression of skin fibrosis in experimental systemic sclerosis. In this study we investigated whether AjA also prevents and modulates lung fibrosis induced by bleomycin (BLM) when administered in mice during the inflammatory or the fibrogenic phase of the model. Methods: The anti-inflammatory and antifibrotic efficacy of AjA was evaluated in DBA/2 mice treated orally once a day starting either at day 0 (preventive treatment) or at day 8 (therapeutic treatment) after a single intratracheal instillation of BLM. AjA was given at a dose of 1 mg/kg or 5 mg/kg. Mice were sacrificed at day 8, 14 and 21 after BLM and lungs were processed for histology and morphometry, and examined for HO-proline content and for the expression of transforming growth factor beta 1 (TGF-β1), phosphorylated Smad2/3 (pSMAD2/3), connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA) and peroxisome proliferator-activated receptor-gamma (PPAR-γ). Results: In the 1st week after BLM challenge, an acute inflammation characterized by neutrophil and macrophage accumulation was the main change present in lung parenchyma. The "switch" between inflammation and fibrosis occurs between day 8 and 14 after BLM instillation and involves the bronchi and vasculature. In the subsequent week (at day 21 after BLM instillation) bronchiolocentric fibrosis with significant increase of tissue collagen develops. The fibrotic response evaluated by morphometry and quantified as HO-proline in lung tissue at day 21 after BLM treatment was significantly reduced in mice receiving either AjA in the inflammatory or in early fibrogenic phase. AjA induces marked change in the expression pattern of products implicated in fibrogenesis, such as TGF-β1, pSMAD2/3, CTGF and α-SMA. In addition, AjA increases significantly the number of PPAR-γ positive cells and its nuclear localization. Conclusions: AjA treatment, starting either at day 0 or at day 8 after BLM challenge, counteracts the progression of pulmonary fibrosis. The anti-fibrotic effectiveness of AjA is irrespective of timing of compound administration. Further clinical studies are necessary to establish whether AjA may represent a new therapeutic option for treating fibrotic lung diseases

    Severe Reduction in Number and Function of Peripheral T Cells Does Not Afford Protection toward Emphysema and Bronchial Remodeling Induced in Mice by Cigarette Smoke

    Get PDF
    8openThe protein Lck (p56(Lck)) is a Src family tyrosine kinase expressed at all stages of thymocyte development and is required for maturation of T cells. The targeted disruption of Lck gene in mice results in severe block in thymocyte maturation with substantial reduction in the development of CD4(+)CD8(+) thymocytes, severe reduction of peripheral T cells, and disruption of T-cell receptor signaling with defective function of T-cell responses. To investigate the role of T lymphocyte in the development of cigarette smoke-induced pulmonary changes, Lck(-/-) mice and corresponding congenic wild-type mice were chronically exposed to cigarette smoke, and their lungs were analyzed by biochemical, immunologic, and morphometric methods. Smoking mice from both genotypes showed disseminated foci of emphysema and large areas of goblet cell metaplasia in bronchial and bronchiolar epithelium. Morphometric evaluation of lung changes and lung elastin determination confirmed that mice from both genotypes showed the same degree of emphysematous lesions. Thus, cigarette smoke exposure in the presence of severe reduction in number and function of peripheral T cells does not influence the development of pulmonary changes induced by cigarette smoke. The data obtained suggest that innate immunity is a leading actor in the early development of pulmonary changes in smoking mice and that the adaptive immune response may play a role at later stages.openDe Cunto, Giovanna; Lunghi, Benedetta; Bartalesi, Barbara; Cavarra, Eleonora; Fineschi, Silvia; Ulivieri, Cristina; Lungarella, Giuseppe; Lucattelli, MonicaDE CUNTO, Giovanna; Lunghi, Benedetta; Bartalesi, Barbara; Cavarra, Eleonora; Fineschi, Silvia; Ulivieri, Cristina; Lungarella, Giuseppe; Lucattelli, Monic

    P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF

    The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases.The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms.Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes.Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF

    Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We reported that roflumilast, a phosphodiesterase 4 inhibitor, given orally at 5 mg/kg to mice prevented the development of emphysema in a chronic model of cigarette smoke exposure, while at 1 mg/kg was ineffective. Here we investigated the effects of roflumilast on the volume density (V<sub>V</sub>) of the inflammatory cells present in the lungs after chronic cigarette smoke exposure.</p> <p>Methods</p> <p>Slides were obtained from blocks of the previous study and V<sub>V </sub>was assessed immunohistochemically and by point counting using a grid with 48 points, a 20× objective and a computer screen for a final magnification of 580×. Neutrophils were marked with myeloperoxidase antibody, macrophages with Mac-3, dendritic cells with fascin, B-lymphocytes with B220, CD4+ T-cells with CD4+ antibody, and CD8+T-cells with CD8-α. The significance of the differences was calculated using one-way analysis of variance.</p> <p>Results</p> <p>Chronic smoke exposure increased neutrophil V<sub>V </sub>by 97%, macrophage by 107%, dendritic cell by 217%, B-lymphocyte by 436%, CD4+ by 524%, and CD8+ by 417%. The higher dose of roflumilast prevented the increase in neutrophil V<sub>V </sub>by 78%, macrophage by 82%, dendritic cell by 48%, B-lymphocyte by 100%, CD4+ by 98% and CD8+ V<sub>V </sub>by 88%. The lower dose of roflumilast did not prevent the increase in neutrophil, macrophage and B-cell V<sub>V </sub>but prevented dendritic cells by 42%, CD4+ by 55%, and CD8+ by 91%.</p> <p>Conclusion</p> <p>These results indicate (<it>i</it>) chronic exposure to cigarette smoke in mice results in a significant recruitment into the lung of inflammatory cells of both the innate and adaptive immune system; (<it>ii</it>) roflumilast at the higher dose exerts a protective effect against the recruitment of all these cells and at the lower dose against the recruitment of dendritic cells and T-lymphocytes; (<it>iii</it>) these findings underline the role of innate immunity in the development of pulmonary emphysema and (<it>iiii</it>) support previous results indicating that the inflammatory cells of the adaptive immune system do not play a central role in the development of cigarette smoke induced emphysema in mice.</p

    Systemic Inhibition of NF-κB Activation Protects from Silicosis

    Get PDF
    Background: Silicosis is a complex lung disease for which no successful treatment is available and therefore lung transplantation is a potential alternative. Tumor necrosis factor alpha (TNFα) plays a central role in the pathogenesis of silicosis. TNFα signaling is mediated by the transcription factor, Nuclear Factor (NF)-κB, which regulates genes controlling several physiological processes including the innate immune responses, cell death, and inflammation. Therefore, inhibition of NF-κB activation represents a potential therapeutic strategy for silicosis. Methods/Findings: In the present work we evaluated the lung transplant database (May 1986-July 2007) at the University of Pittsburgh to study the efficacy of lung transplantation in patients with silicosis (n = 11). We contrasted the overall survival and rate of graft rejection in these patients to that of patients with idiopathic pulmonary fibrosis (IPF, n = 79) that was selected as a control group because survival benefit of lung transplantation has been identified for these patients. At the time of lung transplantation, we found the lungs of silica-exposed subjects to contain multiple foci of inflammatory cells and silicotic nodules with proximal TNFα expressing macrophage and NF-κB activation in epithelial cells. Patients with silicosis had poor survival (median survival 2.4 yr; confidence interval (CI): 0.16-7.88 yr) compared to IPF patients (5.3 yr; CI: 2.8-15 yr; p = 0.07), and experienced early rejection of their lung grafts (0.9 yr; CI: 0.22-0.9 yr) following lung transplantation (2.4 yr; CI:1.5-3.6 yr; p<0.05). Using a mouse experimental model in which the endotracheal instillation of silica reproduces the silica-induced lung injury observed in humans we found that systemic inhibition of NF-κB activation with a pharmacologic inhibitor (BAY 11-7085) of IκBα phosphorylation decreased silica-induced inflammation and collagen deposition. In contrast, transgenic mice expressing a dominant negative IκBα mutant protein under the control of epithelial cell specific promoters demonstrate enhanced apoptosis and collagen deposition in their lungs in response to silica. Conclusions: Although limited by its size, our data support that patients with silicosis appear to have poor outcome following lung transplantation. Experimental data indicate that while the systemic inhibition of NF-κB protects from silica-induced lung injury, epithelial cell specific NF-κB inhibition appears to aggravate the outcome of experimental silicosis. © 2009 Di Giuseppe et al

    Chairs' Comments on 2nd Biennial International Research Conference on Alpha-1 Antitrypsin Novel Concepts in the Mechanisms, Monitoring and Treatment of COPD in Alpha-1 Antitrypsin Deficiency

    No full text
    2siSponsorizzato dalla ALPHA-1 PI Foundation, USA PMID: 27564661openopenWanner, Adam; Lungarella, GiuseppeWanner, Adam; Lungarella, Giusepp
    • …
    corecore