40 research outputs found

    Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content

    Get PDF
    One of the challenges to enable targeted modification of lignocellulosic biomass from grasses for improved biofuel and biochemical production lies within our limited understanding of the transcriptional control of secondary cell wall biosynthesis. Here, we investigated the role of the maize MYB transcription factor ZmMYB167 in secondary cell wall biosynthesis and how modified ZmMYB167 expression in two distinct grass model species affects plant biomass and growth phenotypes. Heterologous expression of ZmMYB167 in the C3 model system Brachypodium led to mild dwarf phenotypes, increased lignin (~7% to 13%) and S-lignin monomer (~11% to 16%) content, elevated concentrations of cell wall-bound p-coumaric acid (~15% to 24%) and reduced biomass sugar release (~20%) compared to controls. Overexpression of ZmMYB167 in the C4 model system Zea mays increased lignin (~4% to 13%), p-coumaric acid (~8% to 52%) and ferulic acid (~13% to 38%) content but did not affect plant growth and development nor biomass recalcitrance. Taken together, modifying ZmMYB167 expression represents a target to alter lignin and phenolic content in grasses. The ZmMYB167 expression-induced discrepancies in plant phenotypic and biomass properties between the two grass model systems highlight the challenges and opportunities for MYB transcription factor-based genetic engineering approaches of grass biomass

    Nutrient and drought stress:Implications for phenology and biomass quality in miscanthus

    Get PDF
    Background and Aims : The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties. Methods : Automated imaging facilities at the National Plant Phenomics Centre (NPPC-Aberystwyth) were used for dynamic phenotyping to identify plant responses to separate and combinatorial stresses. Harvested leaf and stem samples of the three miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus and Miscanthus × giganteus) were separately subjected to saccharification assays, to measure sugar release, and cell-wall composition analyses. Key Results : Phenotyping showed that the M. sacchariflorus genotype Sac-5 and particularly the M. sinensis genotype Sin-11 coped better than the M. × giganteus genotype Gig-311 with drought stress when grown in nutrient-poor compost. Sugar release by enzymatic hydrolysis, used as a biomass quality measure, was significantly affected by the different environmental conditions in a stress-, genotype- and organ-dependent manner. A combination of abundant water and low nutrients resulted in the highest sugar release from leaves, while for stems this was generally associated with the combination of drought and nutrient-rich conditions. Cell-wall composition analyses suggest that changes in fine structure of cell-wall polysaccharides, including heteroxylans and pectins, possibly in association with lignin, contribute to the observed differences in cell-wall biomass sugar release. Conclusions: The results highlight the importance of the assessment of miscanthus biomass quality measures in addition to biomass yield determinations and the requirement for selecting suitable miscanthus genotypes for different environmental conditions
    corecore