2,030 research outputs found
Influence of Dimensionality on Thermoelectric Device Performance
The role of dimensionality on the electronic performance of thermoelectric
devices is clarified using the Landauer formalism, which shows that the
thermoelectric coefficients are related to the transmission, T(E), and how the
conducing channels, M(E), are distributed in energy. The Landauer formalism
applies from the ballistic to diffusive limits and provides a clear way to
compare performance in different dimensions. It also provides a physical
interpretation of the "transport distribution," a quantity that arises in the
Boltzmann transport equation approach. Quantitative comparison of
thermoelectric coefficients in one, two, and three dimension shows that the
channels may be utilized more effectively in lower-dimensions. To realize the
advantage of lower dimensionality, however, the packing density must be very
high, so the thicknesses of the quantum wells or wires must be small. The
potential benefits of engineering M(E) into a delta-function are also
investigated. When compared to a bulk semiconductor, we find the potential for
~50 % improvement in performance. The shape of M(E) improves as dimensionality
decreases, but lower dimensionality itself does not guarantee better
performance because it is controlled by both the shape and the magnitude of
M(E). The benefits of engineering the shape of M(E) appear to be modest, but
approaches to increase the magnitude of M(E) could pay large dividends.Comment: 23 pages, 5 figure
Design of testbed and emulation tools
The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems
Towards Multi-Scale Modeling of Carbon Nanotube Transistors
Multiscale simulation approaches are needed in order to address scientific
and technological questions in the rapidly developing field of carbon nanotube
electronics. In this paper, we describe an effort underway to develop a
comprehensive capability for multiscale simulation of carbon nanotube
electronics. We focus in this paper on one element of that hierarchy, the
simulation of ballistic CNTFETs by self-consistently solving the Poisson and
Schrodinger equations using the non-equilibrium Greens function (NEGF)
formalism. The NEGF transport equation is solved at two levels: i) a
semi-empirical atomistic level using the pz orbitals of carbon atoms as the
basis, and ii) an atomistic mode space approach, which only treats a few
subbands in the tube-circumferential direction while retaining an atomistic
grid along the carrier transport direction. Simulation examples show that these
approaches describe quantum transport effects in nanotube transistors. The
paper concludes with a brief discussion of how these semi-empirical device
level simulations can be connected to ab initio, continuum, and circuit level
simulations in the multi-scale hierarchy
On the Lorenz number of multiband materials
There are many exotic scenarios where the Lorenz number of the Wiedemann-Franz law is known to deviate from expected values. However, in conventional semiconductor systems, it is assumed to vary between the values of ∼1.49×10−8WΩK−2 for nondegenerate semiconductors and ∼2.45×10−8WΩK−2 for degenerate semiconductors or metals. Knowledge of the Lorenz number is important in many situations, such as in the design of thermoelectric materials and in the experimental determination of the lattice thermal conductivity. Here, we show that, even in the simple case of two- and three-band semiconductors, it is possible to obtain substantial deviations of a factor of 2 (or in the case of a bipolar system with a Fermi level near the midgap, even orders of magnitude) from expectation. In addition to identifying the sources of deviation in unipolar and bipolar two-band systems, a number of analytical expressions useful for quantifying the size of the effect are derived. As representative case studies, a three-band model of the materials of lead telluride (PbTe) and tin sellenide (SnSe), which are important thermoelectric materials, is also developed and the size of possible Lorenz number variations in these materials explored. Thus, the consequence of multiband effects on the Lorenz number of real systems is demonstrated
Current status of one- and two-dimensional numerical models: Successes and limitations
The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling
Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors
Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor
field effect transistor (MOSFET) is simulated using the non-equilibrium Green's
functions method with the account of electron-phonon scattering. For MOSFETs,
ambipolar conduction is explained via phonon-assisted band-to-band
(Landau-Zener) tunneling. In comparison to the ballistic case, we show that the
phonon scattering shifts the onset of ambipolar conduction to more positive
gate voltage (thereby increasing the off current). It is found that the
subthreshold swing in ambipolar conduction can be made as steep as 40mV/decade
despite the effect of phonon scattering.Comment: 13 pages, 4 figure
Dynamics of Charge Leakage From Self-assembled CdTe Quantum Dots
We study the leakage dynamics of charge stored in an ensemble of CdTe quantum
dots embedded in a field-effect structure. Optically excited electrons are
stored and read out by a proper time sequence of bias pulses. We monitor the
dynamics of electron loss and find that the rate of the leakage is strongly
dependent on time, which we attribute to an optically generated electric field
related to the stored charge. A rate equation model quantitatively reproduces
the results.Comment: 4 pages, submitted to Applied Physics Letter
Ballisticity of nanotube FETs: Role of phonon energy and gate bias
We investigate the role of electron-phonon scattering and gate bias in
degrading the drive current of nanotube MOSFETs. Our central results are: (i)
Optical phonon scattering significantly decreases the drive current only when
gate voltage is higher than a well-defined threshold. It means that elastic
scattering mechanisms are most detrimental to nanotube MOSFETs. (ii) For
comparable mean free paths, a lower phonon energy leads to a larger degradation
of drive current. Thus for semiconducting nanowire FETs, the drive current will
be more sensitive than carbon nanotube FETs because of the smaller phonon
energies in semiconductors. (iii) Radial breathing mode phonons cause an
appreciable reduction in drive current.Comment: 16 pages, 1 table, 4 figure
FISH1D 2.1 User’s Manual
FISH1D is a computer program that solves the one-dimensional Poisson equation for electrostatic Fields In Semiconductor Heterostructures. The program will print or plot the electrostatic potential, electric field, electron and hole densities, dopant density, ionized dopant density, and other quantities of interest versus position at an applied bias voltage (assuming zero current). A capacitance or sheet carrier concentration versus voltage analysis may also be performed. While FISH1D was originally written for the ternary AlxGa1_xAs, it has been modified to simulate CdxHg1_xTe, ZnSe, GexSi1_x, and Si as well, and the program can be readily modified to analyze other semiconductors through the addition of new material subroutines or using the most recent option, the MATDEF card. This card enables the user to enter new material definitions by layers in the input deck without having to recompile, an advantage of FISH1D 2.1 over FISH1D 2.0. The primary purpose of this document is explain how to use FISH1D; for a more thorough discussion of the numerical implementation of FISH1D, the user is directed to the references. A theoretical basis for FISH1D is provided in Appendix I of this manual. The development of FISH1D was supported by the Semiconductor Research Corporation, the National Science Foundation Materials Research Laboratory, and by the Eastman Kodak Company
- …