1 research outputs found

    Supplementary Material for: Tradeoffs in the sensory brain between diurnal and nocturnal rodents

    No full text
    Introduction: Transitions in temporal niche have occurred many times over the course of mammalian evolution. These are associated with changes in sensory stimuli available to animals, particularly with visual cues, because levels of light are so much higher during the day than night. This relationship between temporal niche and available sensory stimuli elicits the expectation that evolutionary transitions between diurnal and nocturnal lifestyles will be accompanied by modifications of sensory systems that optimize the ability of animals to receive, process, and react to important stimuli in the environment. Methods: This study examines the influence of temporal niche on investment in sensory brain tissue of 13 rodent species (five diurnal; eight nocturnal). Animals were euthanized and the brain immediately frozen on dry ice; olfactory bulbs were subsequently dissected and weighed, and the remaining brain was weighed, sectioned, and stained. Stereo Investigator was used to calculate volumes of four sensory regions that function in processing visual (lateral geniculate nucleus, superior colliculus) and auditory (medial geniculate nucleus, inferior colliculus) information. A phylogenetic framework was used to assess the influence of temporal niche on the relative sizes of these brain structures and of olfactory bulb weights. Results: Compared to nocturnal species, diurnal species had larger visual regions, whereas nocturnal species had larger olfactory bulbs than their diurnal counterparts. Of the two auditory structures examined, one (medial geniculate nucleus) was larger in diurnal species, while the other (inferior colliculus) did not differ significantly with temporal niche. Conclusion: Our results indicate a possible indirect association between temporal niche and auditory investment and suggest probable tradeoffs of investment between olfactory and visual areas of the brain, with diurnal species investing more in processing visual information and nocturnal species investing more in processing olfactory information
    corecore