2,615 research outputs found

    van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    Get PDF
    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory (DFT). One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3_3, the adsorption of small molecules within metal-organic frameworks (MOFs), the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general purpose functional that could be applied to a range of materials problems with a variety of competing interactions

    Effect of uniaxial strain on plasmon excitations in graphene

    Full text link
    Uniaxial strain is known to modify significantly the electronic properties of graphene, a carbon single layer of atomic width. Here, we study the effect of applied strain on the composite excitations arising from the coupling of charge carriers and plasmons in graphene, i.e. the plasmarons. Specifically, we predict that the plasmaron energy dispersion, which has been recently observed experimentally in unstrained graphene, is shifted and broadened by applied uniaxial strain. Thus, strain constitutes an additional parameter which may be useful to tune graphene properties in plasmaronic devices.Comment: Invited oral lecture at the 23rd AIRAPT International Conference on "High Pressure Science and Technology", Mumbai (India), September 25-30, 2011. To be published in J. Phys.: Conf. Series (2012

    High Resolution Spectroscopy of Balmer-Dominated Shocks in the RCW 86, Kepler and SN 1006 Supernova Remnants

    Full text link
    We report results from high resolution optical spectroscopy of three non-radiative galactic supernova remnants, RCW 86, Kepler's supernova remnant and SN 1006. We have measured the narrow component H-alpha line widths in Balmer-dominated filaments in RCW 86 and SN 1006, as well as the narrow component width in a Balmer-dominated knot in Kepler's SNR. The narrow component line widths measured in RCW 86 and Kepler's SNR show FWHM of 30-40 km/s, similar to what has been seen in other Balmer-dominated remnants. Of the remnants in our sample, SN 1006 is the fastest shock (~3000 km/s). The narrow component H-alpha and H-beta lines in this remnant have a FWHM of merely 21 km/s. Comparing the narrow component widths measured in our sample with those measured in other remnants shows that the width of the narrow component does not correlate in a simple way with the shock velocity. The implications for the pre-heating mechanism responsible for the observed line widths are discussed.Comment: Accepted by A&

    Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory

    Get PDF
    Two different adsorption configurations of benzene on the Si(001)-(2 x 1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vdW-DF), which accounts for the effect of van der Waals forces. In contrast to the Perdew-Burke-Ernzerhof (PBE), revPBE, and other generalized-gradient approximation functionals, the vdW-DF finds that, for most coverages, the adsorption energy of the butterfly structure is greater than that of the tight-bridge structure
    • …
    corecore