222 research outputs found

    Examining links between anxiety, reinvestment and walking when talking by older adults during adaptive gait

    Get PDF
    Falls by older adults often result in reduced quality of life and debilitating fear of further falls. Stopping walking when talking (SWWT) is a significant predictor of future falls by older adults and is thought to reflect age-related increases in attentional demands of walking. We examine whether SWWT is associated with use of explicit movement cues during locomotion, and evaluate if conscious control (i.e., movement specific reinvestment) is causally linked to falls-related anxiety during a complex walking task. We observed whether twenty-four older adults stopped walking when talking when asked a question during an adaptive gait task. After certain trials, participants completed a visual-spatial recall task regarding walkway features, or answered questions about their movements during the walk. In a subsequent experimental condition, participants completed the walking task under conditions of raised postural threat. Compared to a control group, participants who SWWT reported higher scores for aspects of reinvestment relating to conscious motor processing but not movement self-consciousness. The higher scores for conscious motor processing were preserved when scores representing cognitive function were included as a covariate. There were no group differences in measures of general cognitive function, visual spatial working memory or balance confidence. However, the SWWT group reported higher scores on a test of external awareness when walking, indicating allocation of attention away from task-relevant environmental features. Under conditions of increased threat, participants self-reported significantly greater state anxiety and reinvestment and displayed more accurate responses about their movements during the task. SWWT is not associated solely with age-related cognitive decline or generic increases in age-related attentional demands of walking. SWWT may be caused by competition for phonological resources of working memory associated with consciously processing motor actions and appears to be causally linked with fall-related anxiety and increased vigilance.This research was supported by The Royal Society (IE131576) and British Academy (SG132820)

    Vitamin D receptor gene polymorphisms are associated with breast cancer risk in a UK Caucasian population

    Get PDF
    There is increasing evidence that vitamin D can protect against breast cancer. The actions of vitamin D are mediated via the vitamin D receptor (VDR). We have investigated whether polymorphisms in the VDR gene are associated with altered breast cancer risk in a UK Caucasian population. We recruited 241 women following a negative screening mammogram and 181 women with known breast cancer. The VDR polymorphism BsmI, an intronic 3′ gene variant, was significantly associated with increased breast cancer risk: odds ratio bb vs BB genotype = 2.32 (95% CI, 1.23–4.39). The BsmI polymorphism was in linkage disequilibrium with a candidate translational control site, the variable length poly (A) sequence in the 3′ untranslated region. Thus, the ‘L’ poly (A) variant was also associated with a similar breast cancer risk. A 5′ VDR gene variant, FokI, was not associated with breast cancer risk. Further investigations into the mechanisms of interactions of the VDR with other environmental and/or genetic influences to alter breast cancer risk may lead to a new understanding of the role of vitamin D in the control of cellular and developmental pathways. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Catechol-O-Methyltransferase (COMT) gene polymorphism and breast cancer risk in young women

    Get PDF
    Oestrogen exposure has long been considered to be a main risk factor of breast cancer. More recently, interest has also focused on the possible carcinogenic influence from oestrogen metabolites, such as catechol oestrogens. O-methylation, catalysed by Catechol-O-Methyltransferase (COMT), is one pathway by which the potentially carcinogenic catechol oestrogens can be inactivated. The gene coding for COMT protein contains a single-nucleotide polymorphism (SNP), resulting in an amino acid shift Val→Met, which has been shown to determine high- and low-activity configuration of the enzyme. We hypothesized that the low-activity allele, COMTMet, may be implicated in early onset breast cancer. In the present case–control study, including 126 young breast cancer patients (≤ 36 years) and 117 healthy female blood donors, we analysed the association between COMTMet genotype and risk of breast cancer. No significant difference in the frequency of low-/high-activity alleles was found between cases and controls, indicating that the polymorphism, as a single factor, may not contribute to breast carcinogenesis in young women. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    A Realistic Validation Study of a New Nitrogen Multiple-Breath Washout System

    Get PDF
    Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values

    Mesenchymal Stem Cells Promote Mammosphere Formation and Decrease E-Cadherin in Normal and Malignant Breast Cells

    Get PDF
    Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as "mammospheres" in three-dimensional cultures.We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation.We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC.MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy

    Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells

    Get PDF
    Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host
    • …
    corecore