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Current understanding of the aeronomy of Mars
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Abstract

This paper provides a short overview of our current understanding of the upper atmosphere/ionosphere of Mars
including the escaping neutral atmosphere to space that plays a key role in the current state of the Mars upper
atmosphere. The proper definition of the word “aeronomy” relates to the upper atmosphere where ionization is
important. Currently there is a paucity of measurements of the internal physical structure of the Martian upper
atmosphere/ionosphere. Much that we know has been deduced from theoretical models that predict many more
things than thus far measured. The newest Mars orbital missions, the US MAVEN and Indian MOM missions, just
beginning their science analyses, will provide the measurements needed to fully characterize the aeronomy of Mars.
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Introduction
The term aeronomy has been used since the 1950’s, but
its origin has been largely forgotten. Sydney Chapman
first suggested, in a letter to Nature [1], that the word
aeronomy should replace meteorology, given that the as-
sociation of meteors is misleading. This suggestion was
not followed so a number of years later [2] he modified
his original idea and suggested that aeronomy instead of
“being used to signify the study of the atmosphere in
general, should be adopted with the restricted sense of
the science of the upper atmosphere”. This use of the
term was accepted and has been in use ever since. In
1960 Chapman restated this definition [3] in a slightly
different form by suggesting that aeronomy is the
science of the upper region of the atmosphere where
dissociation and ionization are important.
Our current understanding of the aeronomy of Mars is

very limited. The two Viking landers each carried a mass
spectrometer [4] and a retarding potential analyzer [5].
Thus we have insitu neutral gas composition and plasma
density, composition and temperature information
from only the equivalent to a single sounding rocket
flight. The other in-situ plasma composition data, comes
from the ASPERA instrument [6] on Mars Express
(MEX), which has been providing information on the
density, composition and energy of ions and electrons of
energies between about 10 eV to ~36 keV at altitudes
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beyond about 300 km. Much electron density data exists
from the MARSIS instrument on MEX [7] from in
situ and remote wave sounding - spottily from radio
occultation observations obtained on early missions (e. g.
Mariners, Viking, Russian “Mars” missions) and more
comprehensively from the radio science limb occult-
ation experiments on the more recent Mars Express
[8] and Mars Global Surveyor [9] missions. The same
Mars missions also provided some remote and inferred
atmosphere information from UV occultation, from low al-
titude aerobreaking-phase satellite drag data (MRO, MGS,
Odyssey) and more extensively from Mars Global Sur-
veyor (MGS), reflectometer measurements of atmosphere-
scattered electron pitch angle distributions (e.g.,[10]).
Finally the analogy between Mars and Venus, with similar
atmosphere composition and regions with no intrinsic
surface magnetic fields, has also provided important in-
sights about the aeronomy of this poorly studied region of
Mars. This is a lot of information, particularly of the elec-
tron density distributions. However, we have only glimpses
of the overall complexity of the atmosphere and plasma
states - there is, as of now, almost a complete absence of
the thermal, composition and dynamical parameters that
define the underlying physics of the Martian aeronomy.

Review
Neutral upper atmosphere
The Viking 1 and 2 mass spectrometers on entry obtained
mass spectra from 1 to 49 amu [4]. They sampled the at-
mosphere under not very different solar illumination loca-
tions and solar activity. The composition data from Viking
r. This is an Open Access article distributed under the terms of the Creative
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Figure 2 Dayside atmospheric model. Atmospheric composition
based on the Viking entry-probe neutral measurements, theoretical
modeling of the chemistry using the Viking ion measurements, and
near-earth remote observations of the light species (from [12]).
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1 is shown in Figure 1. Atomic oxygen, a very important
neutral gas species for understanding the aeronomy, was
not measured by these instruments. The density of O,
which has been widely used, was deduced from the
presumed chemistry of the measured ion composition.
Figure 2 shows results from a theoretical model, indi-
cating that many other minor species are expected to
be present. The temperatures derived from the Viking
data [11] are shown in Figure 3, which implies the
presence of significant wave activity.
Given this very limited direct observation of the

atmospheric altitude variation, plus globally patchy
statistical measurements of the density from acceler-
ometer measurements, comprehensive 3D thermo-
spheric circulation models (e.g.,[13,14]), constrained by
the measurements, have been developed during the last
decade. Such models solve the coupled continuity, mo-
mentum and energy equations and provide the densities,
temperature and velocities of the major species. These
models have been very helpful to achieve a global un-
derstanding of the behavior of the upper atmosphere.
Figure 4 shows results from such a model which are
consistent with measured parameters, but the model
predicts spatial changes in the distributions and provide
clues for parameters, such as neutral velocities for which
no direct data is available.

Ionosphere
As indicated in the introduction, each of the two Viking
landers carried a retarding potential analyzer, which pro-
vided information on the major ion densities and plas-
ma temperatures in the ionosphere up to an altitude
of about 300 km as shown in Figures 5 and 6. Note
that two spacecraft vertical profiles are very similar
Figure 1 Viking neutral measurements. Observations of neutral
composition from one of the two Viking lander entry probes, both
of which took place on the dayside of Mars within one month of
one another and at nearly the same solar zenith angles.

Figure 3 Atmosphere temperature measurements. The Viking
measured altitude temperature profiles were generated by
combining the scale heights deduced from the mass spectrometer
density measurements at high altitudes with low altitude
accelerometer measurements (from [11]).



Figure 4 Neutral atmosphere model. Shown are calculated gas temperatures and velocities at 190 km for equinox solar cycle minimum
conditions. (1) Minimum temperatures are in blue and correspond to 115–130K (nightside); (2) Moderate temperatures in green correspond to
170–180K (mostly dayside, low SZA); (3) Maximum temperatures in red correspond to 250–290K (high latitude and evening terminator).
Temperature increments are 10K throughout. Maximum area for horizontal wind is ~350 m/s [15].

Figure 5 Viking ion measurements. The only Mars ion composition measurements were from the two Viking entries in the dayside under quite
similar solar conditions. One question is whether O+ ever becomes dominant at high altitudes. Electron temperatures and ion velocities were also
sampled – with the observation that there are large horizontal motions at high altitudes. (from [16]).
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Figure 6 Viking plasma temperatures. Temperature profiles measured by the two Vikings [5,16] were nearly identical. On the Viking 1 entry
(right), the ion temperature increased from the low altitude neutral temperature Tn (deduced from the neutral scale height) to the measured
thermal electron temperature Te1at high altitudes. The electron temperatures Te2 and Te3 are inferred estimates of the presence of photoelectrons
and a hotter population from the magnetosheath. Tr and Tc are theoretical models of the electron temperature from [4] and [17].

Nagy and Grebowsky Geoscience Letters  (2015) 2:5 Page 4 of 7
and equivalent to data from a single sounding rocket
flight and that is all the data available to date. In order
to attempt to understand the implication of this
extremely minimal data set, we need to use extensive
model calculations and invoke the similarities between
the ionospheres of Mars and Venus. Carbon dioxide is
the major neutral constituent of both planets, with
atomic oxygen becoming dominant above about 200
Figure 7 Modeled 1-D ion composition. [18] modeled 14 ions: CO2
+, Ar+

seen the model matches the total ion/electron measurements of Viking 1 w
predicted in the models that have yet to be measured.
and 150 km, respectively. The Viking RPA’s measure-
ments detected ion flows of ~100 m/s at high altitudes
and the fact that Mars has remnant crustal magnetic
fields introduces complexity in the transport processes
above the chemical equilibrium region (≤200 km), but
the basic parent sources of the two ionosphere regions
are very similar. The controlling chemical processes
are:
, N2
+, O+(4S), O+(2D), O+(2P), CO+, C+, N+, O2

+, NO+, O++, H+, He. As
ith an assumed upward ion flow (right frame), but many species are



Figure 8 MHD 3-D ion model. Viking 1 ion density measurements
are compared to model calculations of [19]. The lack of good
agreement in O+ is the result of the uncertainty in neutral O
densities; excellent agreement could be achieved by adjusting the
neutral O density values, which were originally obtained by fitting a
different model.
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� Dominant photoionization parent is CO2:

CO2 þ hν → CO2
þ þ e−

� (minor photo-ions are also produced: O+, N2
+,

CO+, O2
+, NO+, H2

+)
� Ion-neutral chemical interactions transforms species:

O2
+ produced by:

CO2
þ þO→ O2

þ þ CO
and

Oþ þ CO2 −− > O2
þ þ CO

(the charge exchange reactions indicated above are
very fast so O2

+ dominates the ionosphere composition)
Figure 9 Oxygen corona. Calculated hot oxygen densities in the meridio
denotes log density in cm−3).
� Ion loss is via dissociative recombination:

O2
þ þ e−→ O þ O

This ion chemistry leads to the, initially unexpected
result, that in an atmosphere that basically has no mo-
lecular oxygen, the major ion is O2

+. Figure 7 shows the
results from a 1D chemical-diffusion model ([18]) that
reproduces the Viking observations (assuming a certain
topside ion outflow) and also shows that many import-
ant minor ion species are also expected to be present.
Such a 1D model is very important, because it can in-

clude the many important chemical processes; however
it requires a number of important assumptions (e.g.
upper boundary ion flow and plasma temperature). We
also have 3D MHD models, which self-consistently solve
the plasma continuity, momentum and energy equations
from below the main ionosphere well out into the solar
wind. However there is always a price to pay; such a
model given limited computational resources can only
consider the main ions (O2

+, O+, CO2
+). The results from

such a model [19] are shown in Figure 8.
It was established decades ago, using the large Pioneer

Venus data base, that the observed ionosphere tempera-
tures at Venus, required either i) a reasonable, but ad
hoc energy inflow at the top of the ionosphere and/or ii)
a reduced electron thermal conductivity. The plasma
temperatures measured by the RPA’s on Viking shown in
Figure 6 also increase enough with increasing altitude to
require the ad hoc energy input assumptions, as needed
in the case of Venus. Figure 8 shows the results of a
model ion composition calculation that used a reason-
able topside heat inflow to match the observed ion tem-
peratures from Viking and that agrees with the Viking
composition measurements. Currently it is clear that con-
ventional EUV heating and classical thermal conductivity
lead to temperature values below the observed ones both
nal plane for low and high solar activity from [24] (the color scale



Figure 10 Measured ion escape fluxes. Mars Express measured
the solar cycle variation (Figure 3b from [27]) of O escape measured
in the tail for 4 time intervals of data from 2007 through 2013.
Average O escape fluxes are plotted vs. monthly F10.7 (normalized
in plot) measured at Earth. Dark circles correspond to independently
derived rates from earlier studies.
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at Mars and Venus and there is insufficient information
to establish if either or both of the processes suggested to
remedy this problem are in effect active. It is quite likely
that both play a role, but whether one or the other domin-
ate, or some other process is active, cannot be established
at this time. Note that two review papers have been pub-
lished recently that deal with details of the ionosphere of
Mars [20,21].

Exosphere and Atmospheric Escape
At both Mars and Venus a hot oxygen corona has been
observed to be present ([22,23]). These fast energetic
oxygen atoms are mostly created by dissociative recom-
bination of molecular oxygen ions (some other processes,
such as dissociative recombination of CO+ also make a
contribution).

Oþ
2 þ e→O 3Pð Þ þ 6:99eV

→O 3Pð Þ þ O 1Dð Þ þ 5:02eV

→O 3Pð Þ þ O 1Sð Þ þ 2:80eV

→O 1Dð Þ þ O 1Sð Þ þ 0:84eV

→O 1Dð Þ þ O 1Sð Þ þ 0:84eV

Sophisticated 3D Monte Carlo models have been devel-
oped to quantify the distribution of these atoms around
Mars [15]. An example of such predicted spatial distribu-
tion is shown in Figure 9.
The maximum energy of a hot oxygen created by the

dissociative recombination of O2
+ is about 3.5 eV; this

energy is too low to allow it to escape from Venus, but
is well above the necessary escape energy of Mars
(~2 eV), thus resulting in a significant escape flux. Esti-
mates of oxygen escape are indicated in Table 1 [25];
note the significant variation with orbital location and
solar insolation.
The other process by which the atmosphere can be

depleted is ion escape. Ion escape has been measured
extensively by the ASPERA instrument on Mars Express
([26,27]) and also widely modeled (e.g. [24,28-30]) and
there is reasonably good agreement between the measured
and calculated values. Figure 10 shows the measured solar
cycle variation obtained from Mars Express and Table 2
Table 1 Calculated neutral atomic oxygen escape
fluxes [21]

Escape rate (1025s1) Vernal
equinox

Autumnal
equinox

Aphelion Perihelion

Solar minimum 1.30 1.61 1.14 1.74

Solar moderate 2.03 2.5 1.82 3.29

Solar maximum 2.87 3.83 2.71 5.18
shows the results of the most recent calculations by Dong
et al. [28].
Conclusions
As outlined in the introduction the amount of direct
information available at this point on the aeronomy of
Mars is extremely limited. However, that is changing
very rapidly. There are two spacecraft, recently begin-
ning science operations, in orbit around Mars (both
were inserted into orbit late September 2014) carrying
instruments that will provide a wealth of new informa-
tion. The Indian Mars Orbiter Mission (MOM) carries
three aeronomy related instruments: a methane sensor,
a quadrupole neutral mass spectrometer and a Lyman
alpha photometer. The US Mars Atmospheric Volatile
Escape Mission (MAVEN) has 9 instruments on board
all designed to address a wide range of aeronomy related
Table 2 Modeled ion escape fluxes (s−1) of dominant ion
species [10]

NeutralProfile Simulation
Cases

O+ O2
+ CO2

+ Total

3D MTGCM Case 1 4.2x1023 1.7x1024 3.5x1023 2.5x1024

Case 2 3.7x1024 2.5x1024 3.8x1023 6.6x1024

Case 3 1.0x1025 2.5x1025 8.2x1024 4.3x1025

Case 1 solar minimum conditions; case 2: solar maximum; and case 3: solar
maximum with a disturbed solar wind. Fluxes in s−1.
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issues. After the completion of the Pioneer Venus Orbiter
mission we could confidently state that we knew more
about the aeronomy of Venus than any other planet in
our solar system except for Earth. We are confident that
in the next year or two we will be able to say the same
about Mars.
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