3,272 research outputs found

    Secondary Electron Emission Yields

    Get PDF
    The secondary electron emission (SEE) characteristics for a variety of spacecraft materials were determined under UHV conditions using a commercial double pass CMA which permits sequential Auger electron electron spectroscopic analysis of the surface. The transparent conductive coating indium tin oxide (ITO) was examined on Kapton and borosilicate glass and indium oxide on FED Teflon. The total SEE coefficient ranges from 2.5 to 2.6 on as-received surfaces and from 1.5 to 1.6 on Ar(+) sputtered surfaces with 5 nm removed. A cylindrical sample carousel provides normal incidence of the primary beam as well as a multiple Faraday cup measurement of the approximately nA beam currents. Total and true secondary yields are obtained from target current measurements with biasing of the carousel. A primary beam pulsed mode to reduce electron beam dosage and minimize charging of insulating coatings was applied to Mg/F2 coated solar cell covers. Electron beam effects on ITO were found quite important at the current densities necessary to do Auger studies

    A linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    Full text link
    We have considered linear kinetic theory including the electron spin properties in a magnetized plasma. The starting point is a mean field Vlasov-like equation, derived from a fully quantum mechanical treatment, where effects from the electron spin precession and the magnetic dipole force is taken into account. The general conductivity tensor is derived, including both the free current contribution, as well as the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.Comment: 11 page

    Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions

    Get PDF
    The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud

    Geometric phases of scattering states in a ring geometry: adiabatic pumping in mesoscopic devices

    Full text link
    Geometric phases of scattering states in a ring geometry are studied based on a variant of the adiabatic theorem. Three time scales, i.e., the adiabatic period, the system time and the dwell time, associated with adiabatic scattering in a ring geometry plays a crucial role in determining geometric phases, in contrast to only two time scales, i.e., the adiabatic period and the dwell time, in an open system. We derive a formula connecting the gauge invariant geometric phases acquired by time-reversed scattering states and the circulating (pumping) current. A numerical calculation shows that the effect of the geometric phases is observable in a nanoscale electronic device.Comment: 9 pages, 3 figure
    • …
    corecore