3,272 research outputs found
Secondary Electron Emission Yields
The secondary electron emission (SEE) characteristics for a variety of spacecraft materials were determined under UHV conditions using a commercial double pass CMA which permits sequential Auger electron electron spectroscopic analysis of the surface. The transparent conductive coating indium tin oxide (ITO) was examined on Kapton and borosilicate glass and indium oxide on FED Teflon. The total SEE coefficient ranges from 2.5 to 2.6 on as-received surfaces and from 1.5 to 1.6 on Ar(+) sputtered surfaces with 5 nm removed. A cylindrical sample carousel provides normal incidence of the primary beam as well as a multiple Faraday cup measurement of the approximately nA beam currents. Total and true secondary yields are obtained from target current measurements with biasing of the carousel. A primary beam pulsed mode to reduce electron beam dosage and minimize charging of insulating coatings was applied to Mg/F2 coated solar cell covers. Electron beam effects on ITO were found quite important at the current densities necessary to do Auger studies
Recommended from our members
Implementation and impact of pediatric antimicrobial stewardship programs: a systematic scoping review.
Background: Antibiotics are the most common medicines prescribed to children in hospitals and the community, with a high proportion of potentially inappropriate use. Antibiotic misuse increases the risk of toxicity, raises healthcare costs, and selection of resistance. The primary aim of this systematic review is to summarize the current state of evidence of the implementation and outcomes of pediatric antimicrobial stewardship programs (ASPs) globally. Methods: MEDLINE, Embase and Cochrane Library databases were systematically searched to identify studies reporting on ASP in children aged 0-18 years and conducted in outpatient or in-hospital settings. Three investigators independently reviewed identified articles for inclusion and extracted relevant data. Results: Of the 41,916 studies screened, 113 were eligible for inclusion in this study. Most of the studies originated in the USA (52.2%), while a minority were conducted in Europe (24.7%) or Asia (17.7%). Seventy-four (65.5%) studies used a before-and-after design, and sixteen (14.1%) were randomized trials. The majority (81.4%) described in-hospital ASPs with half of interventions in mixed pediatric wards and ten (8.8%) in emergency departments. Only sixteen (14.1%) studies focused on the costs of ASPs. Almost all the studies (79.6%) showed a significant reduction in inappropriate prescriptions. Compliance after ASP implementation increased. Sixteen of the included studies quantified cost savings related to the intervention with most of the decreases due to lower rates of drug administration. Seven studies showed an increased susceptibility of the bacteria analysed with a decrease in extended spectrum beta-lactamase producers E. coli and K. pneumoniae; a reduction in the rate of P. aeruginosa carbapenem resistance subsequent to an observed reduction in the rate of antimicrobial days of therapy; and, in two studies set in outpatient setting, an increase in erythromycin-sensitive S. pyogenes following a reduction in the use of macrolides. Conclusions: Pediatric ASPs have a significant impact on the reduction of targeted and empiric antibiotic use, healthcare costs, and antimicrobial resistance in both inpatient and outpatient settings. Pediatric ASPs are now widely implemented in the USA, but considerable further adaptation is required to facilitate their uptake in Europe, Asia, Latin America and Africa
A linearized kinetic theory of spin-1/2 particles in magnetized plasmas
We have considered linear kinetic theory including the electron spin
properties in a magnetized plasma. The starting point is a mean field
Vlasov-like equation, derived from a fully quantum mechanical treatment, where
effects from the electron spin precession and the magnetic dipole force is
taken into account. The general conductivity tensor is derived, including both
the free current contribution, as well as the magnetization current associated
with the spin contribution. We conclude the paper with an extensive discussion
of the quantum-mechanical boundary where we list parameter conditions that must
be satisfied for various quantum effects to be influential.Comment: 11 page
Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions
The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud
Geometric phases of scattering states in a ring geometry: adiabatic pumping in mesoscopic devices
Geometric phases of scattering states in a ring geometry are studied based on
a variant of the adiabatic theorem. Three time scales, i.e., the adiabatic
period, the system time and the dwell time, associated with adiabatic
scattering in a ring geometry plays a crucial role in determining geometric
phases, in contrast to only two time scales, i.e., the adiabatic period and the
dwell time, in an open system. We derive a formula connecting the gauge
invariant geometric phases acquired by time-reversed scattering states and the
circulating (pumping) current. A numerical calculation shows that the effect of
the geometric phases is observable in a nanoscale electronic device.Comment: 9 pages, 3 figure
- …