472 research outputs found

    Nonlinear optics with less than one photon

    Full text link
    We demonstrate suppression and enhancement of spontaneous parametric down- conversion via quantum interference with two weak fields from a local oscillator (LO). Pairs of LO photons are observed to upconvert with high efficiency for appropriate phase settings, exhibiting an effective nonlinearity enhanced by at least 10 orders of magnitude. This constitutes a two-photon switch, and promises to be useful for a variety of nonlinear optical effects at the quantum level.Comment: 8 pages, 5 figure

    Classical dispersion-cancellation interferometry

    Full text link
    Even-order dispersion cancellation, an effect previously identified with frequency-entangled photons, is demonstrated experimentally for the first time with a linear, classical interferometer. A combination of a broad bandwidth laser and a high resolution spectrometer was used to measure the intensity correlations between anti-correlated optical frequencies. Only 14% broadening of the correlation signal is observed when significant material dispersion, enough to broaden the regular interferogram by 4250%, is introduced into one arm of the interferometer.Comment: 4 pages, 3 figure

    An α2(Zα)5m\alpha^{2}(Z \alpha)^{5}m Contribution to the Hydrogen Lamb Shift from Virtual Light by Light Scattering

    Full text link
    The radiative correction to the Lamb shift of order α2(Zα)5m\alpha^{2}(Z\alpha)^5m induced by the light by light scattering insertion in external photons is obtained. The new contribution turns out to be equal to 0.122(2)α2(Zα)5/(πn3)(mr/m)3m-0.122(2)\alpha^2(Z\alpha)^5/(\pi n^3)(m_r/m)^3m. Combining this contribution with our previous results we obtain the complete correction of order α2(Zα)5m\alpha^{2}(Z\alpha)^5m induced by all diagrams with closed electron loops. This correction is 37.3(1)37.3(1) kHz and 4.67(1)4.67(1) kHz for the 1S1S- and 2S2S-states in hydrogen, respectively.Comment: pages, Penn State Preprint PSU/TH/142, February 199

    Comment on "A linear optics implementation of weak values in Hardy's paradox"

    Full text link
    A recent experimental proposal by Ahnert and Payne [S.E. Ahnert and M.C. Payne, Phys. Rev. A 70, 042102 (2004)] outlines a method to measure the weak value predictions of Aharonov in Hardy's paradox. This proposal contains flaws such as the state preparation method and the procedure for carrying out the requisite weak measurements. We identify previously published solutions to some of the flaws.Comment: To be published in Physical Review

    The Association Between Dental Coverage and Self-reported Health in Older Adults jGPHA

    Get PDF
    Background: For the older population of the United States, lack of dental insurance coverage is a substantial health problem. The purpose of the present study was to examine the longitudinal relationship between dental coverage and self-reported health among older adults. Methods: The Health and Retirement Study (HRS), a nationally representative biennial cohort study of community-dwelling individuals, includes 19,595 adults (aged 50 and older) living in the United States. For the 2010, 2012, and 2014 waves, the independent variable of dental coverage and the outcome of self-reported health were examined. Results: At each time point, dental coverage for older adults had a positive association with self-reported health (parameter estimate, β=0.340, standard error (SE)=0.039, p\u3c0.0001), controlling for sociodemographic variables of age, sex, race/ethnicity, education, and the status of edentulism. There were no significant longitudinal effects for dental coverage associated with selfreported health. Conclusions: At each time point, the results show a positive association between having dental coverage and better self-reported health of older adults. This is relevant, because, in the United States, there is an increasing population of older people

    Quantum metrology timing limits of the Hong-Ou-Mandel interferometer and of general two-photon measurements

    Full text link
    We examine the precision limits of Hong-Ou-Mandel (HOM) timing measurements, as well as precision limits applying to generalized two-photon measurements. As a special case, we consider the use of two-photon measurements using photons with variable bandwidths and frequency correlations. When the photon bandwidths are not equal, maximizing the measurement precision involves a trade-off between high interference visibility and strong frequency anticorrelations, with the optimal precision occuring when the photons share non-maximal frequency anticorrelations. We show that a generalized measurement has precision limits that are qualitatively similar to those of the HOM measurement whenever the generalized measurement is insensitive to the net delay of both photons. By examining the performance of states with more general frequency distributions, our analysis allows for engineering of the joint spectral amplitude for use in realistic situations, in which both photons may not have ideal spectral properties.Comment: 12 pages, 6 figures; resubmissio

    Experimental joint weak measurement on a photon pair as a probe of Hardy's Paradox

    Full text link
    It has been proposed that the ability to perform joint weak measurements on post-selected systems would allow us to study quantum paradoxes. These measurements can investigate the history of those particles that contribute to the paradoxical outcome. Here, we experimentally perform weak measurements of joint (i.e. nonlocal) observables. In an implementation of Hardy's Paradox, we weakly measure the locations of two photons, the subject of the conflicting statements behind the Paradox. Remarkably, the resulting weak probabilities verify all these statements but, at the same time, resolve the Paradox
    corecore