7,922 research outputs found

    Soft Pomerons and the Forward LHC Data

    Full text link
    Recent data from LHC13 by the TOTEM Collaboration on σtot\sigma_{tot} and ρ\rho have indicated disagreement with all the Pomeron model predictions by the COMPETE Collaboration (2002). On the other hand, as recently demonstrated by Martynov and Nicolescu (MN), the new σtot\sigma_{tot} datum and the unexpected decrease in the ρ\rho value are well described by the maximal Odderon dominance at the highest energies. Here, we discuss the applicability of Pomeron dominance through fits to the \textit{most complete set} of forward data from pppp and pˉp\bar{p}p scattering. We consider an analytic parametrization for σtot(s)\sigma_{tot}(s) consisting of non-degenerated Regge trajectories for even and odd amplitudes (as in the MN analysis) and two Pomeron components associated with double and triple poles in the complex angular momentum plane. The ρ\rho parameter is analytically determined by means of dispersion relations. We carry out fits to pppp and pˉp\bar{p}p data on σtot\sigma_{tot} and ρ\rho in the interval 5 GeV - 13 TeV (as in the MN analysis). Two novel aspects of our analysis are: (1) the dataset comprises all the accelerator data below 7 TeV and we consider \textit{three independent ensembles} by adding: either only the TOTEM data (as in the MN analysis), or only the ATLAS data, or both sets; (2) in the data reductions to each ensemble, uncertainty regions are evaluated through error propagation from the fit parameters, with 90 \% CL. We argument that, within the uncertainties, this analytic model corresponding to soft Pomeron dominance, does not seem to be excluded by the \textit{complete} set of experimental data presently available.Comment: 10 pages, 4 figures, 1 table. Two paragraphs and four references added. Accepted for publication in Phys. Lett.

    Survival probability of large rapidity gaps in a QCD model with a dynamical infrared mass scale

    Get PDF
    We compute the survival probability of large rapidity gaps (LRG) in a QCD based eikonal model with a dynamical gluon mass, where this dynamical infrared mass scale represents the onset of nonperturbative contributions to the diffractive hadron-hadron scattering. Since rapidity gaps can occur in the case of Higgs boson production via fusion of electroweak bosons, we focus on $WW\to H$ fusion processes and show that the resulting decreases with the increase of the energy of the incoming hadrons, in line with the available experimental data for LRG. We obtain =27.6±7.8 = 27.6\pm7.8 % (18.2±7.0 18.2\pm7.0 %) at Tevatron (CERN-LHC) energy for a dynamical gluon mass mg=400m_{g}=400 MeV

    The small xx behavior of the gluon structure function from total cross sections

    Full text link
    Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small xx behavior of the gluon distribution function at moderate Q2Q^{2} is directly related to the rise of total hadronic cross sections. In this model the rise of total cross sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small xx gluon distribution function exhibits the power law xg(x,Q2)=h(Q2)xϵxg(x,Q^2)= h(Q^2)x^{-\epsilon}. Assuming that the Q2Q^{2} scale is proportional to the dynamical gluon mass one, we show that the values of h(Q2)h(Q^2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales.Comment: 19 pages, 3 figures; revised version; to appear in Int. J. Mod. Phys.
    corecore