5,091 research outputs found

    Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic Uncertainties

    Get PDF
    This book chapter reviews and summarizes the recent progress in the design of spatial‐based robust adaptive repetitive and iterative learning control. In particular, the collection of methods aims at rotary systems that are subject to spatially periodic uncertainties and based on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive backstepping. We will elaborate on the design procedure (applicable to generic nth‐order systems) of each method and the corresponding stability and convergence theorems

    Robust Adaptive Fuzzy Control for a Class of Switching Power Converters

    Get PDF
    This chapter provides the reader with a control-centric modeling and analysis approach along with a nonlinear control design for a class of switching power converters. A comprehensive model combining the respective state variable models of the interval subsystems is established. Comparison with PSpice simulation justifies the credibility of the model. Based on this model, internal/BIBO stability can be studied for each interval subsystem. Moreover, controllability and observability can also be analyzed to help determine subsequent control configuration. The established model is further investigated for advanced control design, i.e., robust adaptive fuzzy control

    Self organized criticality in an improved Olami-Feder-Christensen model

    Full text link
    An improved version of the Olami-Feder-Christensen model has been introduced to consider avalanche size differences. Our model well demonstrates the power-law behavior and finite size scaling of avalanche size distribution in any range of the adding parameter paddp_{add} of the model. The probability density functions (PDFs) for the avalanche size differences at consecutive time steps (defined as returns) appear to be well approached, in the thermodynamic limit, by q-Gaussian shape with appropriate q values which can be obtained a priori from the avalanche size exponent τ\tau. For the small system sizes, however, return distributions are found to be consistent with the crossover formulas proposed recently in Tsallis and Tirnakli, J. Phys.: Conf. Ser. 201, 012001 (2010). Our results strengthen recent findings of Caruso et al. [Phys. Rev. E 75, 055101(R) (2007)] on the real earthquake data which support the hypothesis that knowing the magnitude of previous earthquakes does not make the magnitude of the next earthquake predictable. Moreover, the scaling relation of the waiting time distribution of the model has also been found.Comment: 16 pages, 6 figure
    corecore