1,645 research outputs found
Neutron diffraction in a model itinerant metal near a quantum critical point
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02,
0.037) show that the ordering moment and the Neel temperature are continuously
suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The
wave vector Q of the spin density wave (SDW) becomes more incommensurate as x
increases in accordance with the two band model. At xc=0.037 we have found
temperature dependent, resolution limited elastic scattering at 4
incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to
2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction
measurements indicate that the electronic structure of Cr is robust, and that
tuning Cr to its QCP results not in the suppression of antiferromagnetism, but
instead enables new spin ordering due to novel nesting of the Fermi surface of
Cr.Comment: Submitted as a part of proceedings of LT25 (Amsterdam 2008
Probing discs around massive young stellar objects with CO first overtone emission
We present high resolution (R~50,000) spectroastrometry over the CO 1st
overtone bandhead of a sample of seven intermediate/massive young stellar
objects. These are primarily drawn from the red MSX source (RMS) survey, a
systematic search for young massive stars which has returned a large, well
selected sample of such objects. The mean luminosity of the sample is
approximately 5 times 10^4 L_\odot, indicating the objects typically have a
mass of ~15 solar masses. We fit the observed bandhead profiles with a model of
a circumstellar disc, and find good agreement between the models and
observations for all but one object. We compare the high angular precision
(0.2-0.8 mas) spectroastrometric data to the spatial distribution of the
emitting material in the best-fitting models. No spatial signatures of discs
are detected, which is entirely consistent with the properties of the
best-fitting models. Therefore, the observations suggest that the CO bandhead
emission of massive young stellar objects originates in small-scale disks, in
agreement with previous work. This provides further evidence that massive stars
form via disc accretion, as suggested by recent simulations.Comment: Accepted for publication in MNRA
Temperature dependence of the resonance and low energy spin excitations in superconducting FeTeSe
We use inelastic neutron scattering to study the temperature dependence of
the low-energy spin excitations in single crystals of superconducting
FeTeSe ( K). In the low-temperature superconducting
state, the imaginary part of the dynamic susceptibility at the electron and
hole Fermi surfaces nesting wave vector ,
, has a small spin gap, a two-dimensional
neutron spin resonance above the spin gap, and increases linearly with
increasing for energies above the resonance. While the intensity
of the resonance decreases like an order parameter with increasing temperature
and disappears at temperature slightly above , the energy of the mode is
weakly temperature dependent and vanishes concurrently above . This
suggests that in spite of its similarities with the resonance in electron-doped
superconducting BaFe(Co,Ni)As, the mode in
FeTeSe is not directly associated with the superconducting
electronic gap.Comment: 7 pages, 6 figure
Quantum spin correlations in an organometallic alternating sign chain
High resolution inelastic neutron scattering is used to study excitations in
the organometallic magnet DMACuCl. The correct magnetic Hamiltonian
describing this material has been debated for many years. Combined with high
field bulk magnetization and susceptibility studies, the new results imply that
DMACuCl is a realization of the alternating
antiferromagnetic-ferromagnetic (AFM-FM) chain. Coupled-cluster calculations
are used to derive exchange parameters, showing that the AFM and FM
interactions have nearly the same strength. Analysis of the scattering
intensities shows clear evidence for inter-dimer spin correlations, in contrast
to existing results for conventional alternating chains. The results are
discussed in the context of recent ideas concerning quantum entanglement.Comment: 5 pages, 4 figures included in text. Submitted to APS Journal
Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2
The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)2As2 has been
investigated by inelastic neutron scattering over the full range from undoped
to the overdoped regime. We observe damped magnetic fluctuations in the normal
state of the optimally doped compound (x=0.06) that share a remarkable
similarity with those in the paramagnetic state of the parent compound (x=0).
In the overdoped superconducting compound (x=0.14), magnetic excitations show a
gap-like behavior, possibly related to a topological change in the hole Fermi
surface (Lifshitz transition), while the imaginary part of the spin
susceptibility prominently resembles that of the overdoped cuprates. For the
heavily overdoped, non-superconducting compound (x=0.24) the magnetic
scattering disappears, which could be attributed to the absence of a hole
Fermi-surface pocket observed by photoemission.Comment: 6 pages, 5 figures, published versio
Neutron, electron and X-ray scattering investigation of Cr1-xVx near Quantum Criticality
The weakness of electron-electron correlations in the itinerant
antiferromagnet Cr doped with V has long been considered the reason that
neither new collective electronic states or even non Fermi liquid behaviour are
observed when antiferromagnetism in CrV is suppressed to zero
temperature. We present the results of neutron and electron diffraction
measurements of several lightly doped single crystals of CrV in
which the archtypal spin density wave instability is progressively suppressed
as the V content increases, freeing the nesting-prone Fermi surface for a new
striped charge instability that occurs at x=0.037. This novel nesting
driven instability relieves the entropy accumulation associated with the
suppression of the spin density wave and avoids the formation of a quantum
critical point by stabilising a new type of charge order at temperatures in
excess of 400 K. Restructuring of the Fermi surface near quantum critical
points is a feature found in materials as diverse as heavy fermions, high
temperature copper oxide superconductors and now even elemental metals such as
Cr.Comment: 6 pages, 6 figures. Accepted to Physical Review
Neutron and X-ray Scattering Studies of the Lightly-Doped Spin-Peierls System Cu(1-x)Cd(x)GeO3
Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3
have been studied using bulk susceptibility, x-ray diffraction, and inelastic
neutron scattering techniques. We investigate the triplet gap in the magnetic
excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and
its relation to the spin-Peierls dimerisation order parameter. We employ two
different theoretical forms to model the inelastic neutron scattering cross
section and chi''(Q,omega), and show the sensitivity of the gap energy to the
choice of chi''(Q,omega). We find that a finite gap exists at the spin-Peierls
phase transition.Comment: 15 Pages, 7 Figures, Submitted to J. Phys. :Condensed Matte
- …