232 research outputs found

    Infrared signatures of the spin-Peierls transition in CuGeO3

    Get PDF
    We investigated the infrared reflectivity of several Mg- and Si-substituted CuGeO3 single crystals. The temperature dependent b-axis and c-axis optical response is reported. For T<Tsp we detected the activation of zone-boundary phonons along the b axis of the crystal on the pure sample and for 1% Mg and 0.7% Si concentrations. From a detailed analysis of the phonon parameters the redshift of the B2u mode at 48 cm^-1 is observed and discussed in relation to the soft mode expected to drive the spin-Peierls phase transition in CuGeO3. Moreover, the polarization dependence of a magnetic excitation measured in transmission at 44 cm^-1 has been investigated.Comment: Revtex, 3 pages, 5 postscript pictures, submitted to PRB Rapid Communication

    The Butcher-Oemler Effect at Moderate Redshift

    Full text link
    We present the results of Butcher-Oemler-style analysis of three moderate- redshift (0.1<z<0.2) clusters which have bimodal X-ray surface brightness profiles. We find that at least two of these clusters exhibit unusually high fractions of blue galaxies as compared to clusters at comparable redshifts studied by Butcher and Oemler (1984). This implies that star formation is occurring in a high fraction of the galaxies in the two clusters. Our results are consistent with hierarchical clustering models in which subcluster- subcluster mergers create shocks in the intracluster medium. The shocks, in turn, induce simultaneous starbursts in a large fraction of cluster galaxies. Our study therefore lends weight to the hypothesis that the Butcher-Oemler effect is an environmental, as well as evolutionary, phenomenon.Comment: 22 pages, 8 figures; accepted for publication in A

    Lattice and Magnetic structures of PrFeAsO, PrFeAsO0.85F0.15 and PrFeAsO0.85

    Full text link
    We use powder neutron diffraction to study the spin and lattice structures of polycrystalline samples of nonsuperconducting PrFeAsO and superconducting PrFeAsO0.85F0.15 and PrFeAsO0.85. We find that PrFeAsO exhibits an abrupt structural phase transitions at 153 K, followed by static long range antiferromagnetic order at 127 K. Both the structural distortion and magnetic order are identical to other rare-earth oxypnictides. Electron-doping the system with either Fluorine or oxygen deficiency suppresses the structural distortion and static long range antiferromagnetic order, therefore placing these materials into the same class of FeAs-based superconductors.Comment: 14 pages, 3 figures, 1 tabl

    Magnetic order in orbital models of the iron pnictides

    Full text link
    We examine the appearance of the experimentally-observed stripe spin-density-wave magnetic order in five different orbital models of the iron pnictide parent compounds. A restricted mean-field ansatz is used to determine the magnetic phase diagram of each model. Using the random phase approximation, we then check this phase diagram by evaluating the static spin susceptibility in the paramagnetic state close to the mean-field phase boundaries. The momenta for which the susceptibility is peaked indicate in an unbiased way the actual ordering vector of the nearby mean-field state. The dominant orbitally resolved contributions to the spin susceptibility are also examined to determine the origin of the magnetic instability. We find that the observed stripe magnetic order is possible in four of the models, but it is extremely sensitive to the degree of the nesting between the electron and hole Fermi pockets. In the more realistic five-orbital models, this order competes with a strong-coupling incommensurate state which appears to be controlled by details of the electronic structure below the Fermi energy. We conclude by discussing the implications of our work for the origin of the magnetic order in the pnictides.Comment: 19 pages, 19 figures; published version, typos corrected, references adde
    corecore