1,912 research outputs found

    Singlet-triplet dispersion reveals additional frustration in the triangular dimer compound Ba3_3Mn2_2O8_8

    Full text link
    We present single crystal inelastic neutron scattering measurements of the S=1 dimerized quasi-two-dimensional antiferromagnet Ba3_3Mn2_2O8_8. The singlet-triplet dispersion reveals nearest-neighbor and next-nearest-neighbor ferromagnetic interactions between adjacent bilayers that compete against each other. Although the inter-bilayer exchange is comparable to the intra-bilayer exchange, this additional frustration reduces the effective coupling along the c-axis and leads to a quasi-two dimensional behavior. In addition, the obtained exchange values are able to reproduce the four critical fields in the phase diagram.Comment: 4 pages, 3 color figures, submitted to an APS physical review journa

    Neutron diffraction in a model itinerant metal near a quantum critical point

    Full text link
    Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of the spin density wave (SDW) becomes more incommensurate as x increases in accordance with the two band model. At xc=0.037 we have found temperature dependent, resolution limited elastic scattering at 4 incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to 2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction measurements indicate that the electronic structure of Cr is robust, and that tuning Cr to its QCP results not in the suppression of antiferromagnetism, but instead enables new spin ordering due to novel nesting of the Fermi surface of Cr.Comment: Submitted as a part of proceedings of LT25 (Amsterdam 2008

    Slope Stability Evaluation for an Existing Steep Cut in Weathered Volcanics, Hong Kong

    Get PDF
    This case study concerns an investigation of a major existing soil slope. It is a 60m (197 ft) high cutting slope, at 40 degrees to 60 degrees to the horizontal, exhibiting a considerably greater degree of stability than was obtained by a series of geotechnical investigations and analyses. The common practice of correlation between widely spaced borings is shown to be inappropriate at this site because of the highly variable ground conditions. Rather, the comprehensive geological comprehensive engineering investigation carried out has enabled a detailed appreciation of the distribution and nature of weathered materials at the site. Transitional materials with soil-like appearance and weak rock properties have been identified. Based on this information, slope stability evaluation was carried out with more realistic results and with greater confidence

    The RMS Survey: Far-Infrared Photometry of Young Massive Stars

    Full text link
    Context: The Red MSX Source (RMS) survey is a multi-wavelength campaign of follow-up observations of a colour-selected sample of candidate massive young stellar objects (MYSOs) in the galactic plane. This survey is returning the largest well-selected sample of MYSOs to date, while identifying other dust contaminant sources with similar mid-infrared colours including a large number of new ultra-compact (UC)HII regions. Aims:To measure the far-infrared (IR) flux, which lies near the peak of the spectral energy distribution (SED) of MYSOs and UCHII regions, so that, together with distance information, the luminosity of these sources can be obtained. Methods:Less than 50% of RMS sources are associated with IRAS point sources with detections at 60 micron and 100 micron, though the vast majority are visible in Spitzer MIPSGAL or IRAS Galaxy Atlas (IGA) images. However, standard aperture photometry is not appropriate for these data due to crowding of sources and strong spatially variable far-IR background emission in the galactic plane. A new technique using a 2-dimensional fit to the background in an annulus around each source is therefore used to obtain far-IR photometry for young RMS sources. Results:Far-IR fluxes are obtained for a total of 1113 RMS candidates identified as young sources. Of these 734 have flux measurements using IGA 60 micron and 100 micron images and 724 using MIPSGAL 70 micron images, with 345 having measurements in both data sets.Comment: 10 pages, 10 figures, 2 Tables, accepted to A&A. A full version of table 1 is available from the lead author or at the CDS upon publicatio

    The RMS Survey: Ammonia and water maser analysis of massive star forming regions

    Full text link
    The Red MSX Source (RMS) survey has identified a sample of ~1200 massive young stellar objects (MYSOs), compact and ultra compact HII regions from a sample of ~2000 MSX and 2MASS colour selected sources. We have used the 100 m Green Bank telescope to search for 22-24 GHz water maser and ammonia (1,1), (2,2) and (3,3) emission towards ~600 RMS sources located within the northern Galactic plane. We have identified 308 H2O masers which corresponds to an overall detection rate of ~50%. Abridged: We detect ammonia emission towards 479 of these massive young stars, which corresponds to ~80%. Ammonia is an excellent probe of high density gas allowing us to measure key parameters such as gas temperatures, opacities, and column densities, as well as providing an insight into the gas kinematics. The average kinetic temperature, FWHM line width and total NH3 column density for the sample are approximately 22 K, 2 km/s and 2x10^{15} cm^{-2}, respectively. We find that the NH3 (1,1) line width and kinetic temperature are correlated with luminosity and finding no underlying dependence of these parameters on the evolutionary phase of the embedded sources, we conclude that the observed trends in the derived parameters are more likely to be due to the energy output of the central source and/or the line width-clump mass relationship. The velocities of the peak H2O masers and the NH3 emission are in excellent agreement with each other, which would strongly suggest an association between the dense gas and the maser emission. Moreover, we find the bolometric luminosity of the embedded source and the isotropic luminosity of the H2O maser are also correlated. We conclude from the correlations of the cloud and water maser velocities and the bolometric and maser luminosity that there is a strong dynamical relationship between the embedded young massive star and the H2O maser.Comment: 17 pages and 17 figures and 8 tables. Tables\,2 and 5 and full versions of Figs. 3 and 7 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    Neutron and X-ray Scattering Studies of the Lightly-Doped Spin-Peierls System Cu(1-x)Cd(x)GeO3

    Full text link
    Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3 have been studied using bulk susceptibility, x-ray diffraction, and inelastic neutron scattering techniques. We investigate the triplet gap in the magnetic excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and its relation to the spin-Peierls dimerisation order parameter. We employ two different theoretical forms to model the inelastic neutron scattering cross section and chi''(Q,omega), and show the sensitivity of the gap energy to the choice of chi''(Q,omega). We find that a finite gap exists at the spin-Peierls phase transition.Comment: 15 Pages, 7 Figures, Submitted to J. Phys. :Condensed Matte

    Neutron, electron and X-ray scattering investigation of Cr1-xVx near Quantum Criticality

    Full text link
    The weakness of electron-electron correlations in the itinerant antiferromagnet Cr doped with V has long been considered the reason that neither new collective electronic states or even non Fermi liquid behaviour are observed when antiferromagnetism in Cr1−x_{1-x}Vx_{x} is suppressed to zero temperature. We present the results of neutron and electron diffraction measurements of several lightly doped single crystals of Cr1−x_{1-x}Vx_{x} in which the archtypal spin density wave instability is progressively suppressed as the V content increases, freeing the nesting-prone Fermi surface for a new striped charge instability that occurs at xc_{c}=0.037. This novel nesting driven instability relieves the entropy accumulation associated with the suppression of the spin density wave and avoids the formation of a quantum critical point by stabilising a new type of charge order at temperatures in excess of 400 K. Restructuring of the Fermi surface near quantum critical points is a feature found in materials as diverse as heavy fermions, high temperature copper oxide superconductors and now even elemental metals such as Cr.Comment: 6 pages, 6 figures. Accepted to Physical Review
    • …
    corecore