2 research outputs found
Linearly scaling direct method for accurately inverting sparse banded matrices
In many problems in Computational Physics and Chemistry, one finds a special
kind of sparse matrices, termed "banded matrices". These matrices, which are
defined as having non-zero entries only within a given distance from the main
diagonal, need often to be inverted in order to solve the associated linear
system of equations. In this work, we introduce a new O(n) algorithm for
solving such a system, being n X n the size of the matrix. We produce the
analytical recursive expressions that allow to directly obtain the solution, as
well as the pseudocode for its computer implementation. Moreover, we review the
different options for possibly parallelizing the method, we describe the
extension to deal with matrices that are banded plus a small number of non-zero
entries outside the band, and we use the same ideas to produce a method for
obtaining the full inverse matrix. Finally, we show that the New Algorithm is
competitive, both in accuracy and in numerical efficiency, when compared to a
standard method based in Gaussian elimination. We do this using sets of large
random banded matrices, as well as the ones that appear when one tries to solve
the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy