34 research outputs found

    Experimental investigation of time dependent behavior of welded Topopah Spring Tuff

    Full text link
    Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty five specimens from the middle nonlithophysal zone were tested at six strain rates: 10 , 10 , 10 , 10 , 10 , and 10 . Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions:σ peak= 271.37Δ&0.0212 Δ peak= 0.0066Δ&0.0083 ES = 41985.4Δ&0.015. Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain

    Long-term mechanical behavior of Yucca Mountain tuff and its variability

    Full text link
    The study of the long term mechanical behavior of Yucca Mountain tuffs is important for several reasons. Long term stability of excavations will affect accessibility (e.g. for inspection purposes), and retrievability. Long term instabilities may induce loading of drip shields and/or emplaced waste, thus affecting drip shield and/or waste package corrosion. Failure of excavations will affect airflow, may affect water flow, and may affect temperature distributions. The long term mechanical behavior of “hard” rocks remains an elusive topic, loaded with uncertainties. A variety of approaches have been used to improve the understanding of this complex subject, but it is doubtful that it has reached a stage where firm predictions can be considered feasible

    Growth performance, digestive capacity and intestinal health of juvenile spotted seabass (Lateolabrax maculatus) fed dietary laminarin supplement

    Get PDF
    Laminarin has antioxidant and immunomodulatory properties and favorably impacts gut microbial composition, providing a potential solution for the treatment of intestinal diseases in fish. The aim of this study was to investigate the effects of laminarin on the growth and intestinal health of juvenile spotted seabass, Lateolabrax maculatus. A total of 450 juveniles (initial body weight: 7.14 ± 0.10 g) were randomly divided into 6 groups with 3 replicates per group and 25 fish per replicate. Six diets were prepared with laminarin supplementation at doses of 0% (Control), 0.4% (P0.4), 0.8% (P0.8), 1.2% (P1.2), 1.6% (P1.6), and 2% (P2). Each group was fed the corresponding diet for 8 weeks. The results indicated that dietary laminarin supplementation of 0.4-1.6% enhanced the specific growth rate (SGR), weight gain rate (WGR), and feed conversion ratio (FCR) of juvenile spotted seabass, and the difference was significant in the P0.8 group (P<0.05). Significantly higher intestinal amylase activity was measured in P0.8 compared with the control group. Trypsin activity was significantly increased in P0.4 and P0.8 groups in contrast to the control (P<0.05). Lipase activity was significantly increased in P0.4, P0.8, P1.6, and P2 groups in contrast to the control (P<0.05). Total antioxidant capacity was significantly increased in the P0.8, P1.2, and P1.6 groups compared to the control group (P<0.05). The P0.8 group exhibited significant increases in reduced glutathione, alkaline phosphatase, and lysozyme levels (P<0.05), whereas the concentrations of diamine oxidase and D-lactate were significantly decreased (P<0.05). Furthermore, intestinal villus height, villus width, and crypt depth were significantly increased in P0.8 and P2 groups (P<0.05), and muscular thickness was significantly increased in the P1.2 group (P<0.05). Intestinal microbial analysis revealed that the alpha diversity of the laminarin supplemented groups was significantly higher than that of the control group. Moreover, the abundance of intestinal beneficial bacteria Lactobacillus and Klebsiella in P0.4 and P0.8 groups was significantly increased (P<0.05), indicating that laminarin altered the composition of intestinal flora and the abundance of dominant bacteria, with a low dose being more conducive to the formation of beneficial bacteria. In conclusion, dietary laminarin supplementation can improve the growth performance and intestinal function of juvenile spotted seabass. Based on the regression analyses of weight gain rate and specific growth rate, the optimal supplemental level of laminarin was estimated to be 0.97% and 0.98%, respectively

    Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde

    Get PDF
    The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants

    Stealthy Hardware Trojan Based Algebraic Fault Analysis of HIGHT Block Cipher

    No full text
    HIGHT is a lightweight block cipher which has been adopted as a standard block cipher. In this paper, we present a bit-level algebraic fault analysis (AFA) of HIGHT, where the faults are perturbed by a stealthy HT. The fault model in our attack assumes that the adversary is able to insert a HT that flips a specific bit of a certain intermediate word of the cipher once the HT is activated. The HT is realized by merely 4 registers and with an extremely low activation rate of about 0.000025. We show that the optimal location for inserting the designed HT can be efficiently determined by AFA in advance. Finally, a method is proposed to represent the cipher and the injected faults with a merged set of algebraic equations and the master key can be recovered by solving the merged equation system with an SAT solver. Our attack, which fully recovers the secret master key of the cipher in 12572.26 seconds, requires three times of activation on the designed HT. To the best of our knowledge, this is the first Trojan attack on HIGHT

    Genomic Characteristics and Functional Analysis of <i>Brucella</i> sp. Strain WY7 Isolated from Antarctic Krill

    No full text
    Antarctic krill (Euphausia superba) is a key species of the Antarctic ecosystem whose unique ecological status and great development potential have attracted extensive attention. However, the genomic characteristics and potential biological functions of the symbiotic microorganisms of Antarctic krill remain unknown. In this study, we cultured and identified a strain of Brucella sp. WY7 from Antarctic krill using whole-genome sequencing and assembly, functional annotation, and comparative genomics analysis. First, based on 16S rDNA sequence alignment and phylogenetic tree analysis, we identified strain WY7 as Brucella. The assembled genome of strain WY7 revealed that it has two chromosomes and a plasmid, with a total genome length of 4,698,850 bp and an average G + C content of 57.18%. The DNA—DNA hybridization value and average nucleotide identity value of strain WY7 and Brucella anthropi ATCC¼ 49188TM, a type strain isolated from human clinical specimens, were 94.8% and 99.07%, respectively, indicating that strain WY7 is closely related to Brucella anthropi. Genomic island prediction showed that the strain has 60 genomic islands, which may produce HigB and VapC toxins. AntiSMASH analysis results showed that strain WY7 might produce many secondary metabolites, such as terpenes, siderophores and ectoine. Moreover, the genome contains genes involved in the degradation of aromatic compounds, suggesting that strain WY7 can use aromatic compounds in its metabolism. Our work will help to understand the genomic characteristics and metabolic potential of bacterial strains isolated from Antarctic krill, thereby revealing their roles in Antarctic krill and marine ecosystems

    Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials

    No full text
    Ovarian cancer (OVCA) arises from three cellular origins, namely surface epithelial cells, germ cells, and stromal cells. More than 85% of OVCAs are EOCs (epithelial ovarian carcinomas), which are the most lethal gynecological malignancies. Cancer stem/progenitor cells (CSPCs) are considered to be cancer promoters due to their capacity for unlimited self-renewal and drug resistance. Androgen receptor (AR) belongs to the nuclear receptor superfamily and can be activated through binding to its ligand androgens. Studies have reported an association between AR expression and EOC carcinogenesis, and AR is suggested to be involved in proliferation, migration/invasion, and stemness. In addition, alternative AR activating signals, including both ligand-dependent and ligand-independent, are involved in OVCA progression. Although some clinical trials have previously been conducted to evaluate the effects of anti-androgens in EOC, no significant results have been reported. In contrast, experimental studies evaluating the effects of anti-androgen or anti-AR reagents in AR-expressing EOC models have demonstrated positive results for suppressing disease progression. Since AR is involved in complex signaling pathways and may be expressed at various levels in OVCA, the aim of this article was to provide an overview of current studies and perspectives regarding the relevance of androgen/AR roles in OVCA
    corecore