36 research outputs found

    Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers

    Get PDF
    published_or_final_versio

    Access and Unmet Needs of Orphan Drugs in 194 Countries and 6 Areas: A Global Policy Review With Content Analysis.

    Get PDF
    OBJECTIVES: Three hundred million people living with rare diseases worldwide are disproportionately deprived of in-time diagnosis and treatment compared with other patients. This review provides an overview of global policies that optimize development, licensing, pricing, and reimbursement of orphan drugs. METHODS: Pharmaceutical legislation and policies related to access and regulation of orphan drugs were examined from 194 World Health Organization member countries and 6 areas. Orphan drug policies (ODPs) were identified through internet search, emails to national pharmacovigilance centers, and systematic academic literature search. Texts from selected publications were extracted for content analysis. RESULTS: One hundred seventy-two drug regulation documents and 77 academic publications from 162 countries/areas were included. Ninety-two of 200 countries/areas (46.0%) had documentation on ODPs. Thirty-four subthemes from content analysis were categorized into 6 policy themes, namely, orphan drug designation, marketing authorization, safety and efficacy requirements, price regulation, incentives that encourage market availability, and incentives that encourage research and development. Countries/areas with ODPs were statistically wealthier (gross national income per capita = 10875vs10 875 vs 3950, P < .001). Country/area income was also positively correlated with the scope of the respective ODP (correlation coefficient = 0.57, P < .001). CONCLUSIONS: Globally, the number of countries with an ODP has grown rapidly since 2013. Nevertheless, disparities in geographical distribution and income levels affect the establishment of ODPs. Furthermore, identified policy gaps in price regulation, incentives that encourage market availability, and incentives that encourage research and development should be addressed to improve access to available and affordable orphan drugs

    Rhabdastrellic Acid-A Induced Autophagy-Associated Cell Death through Blocking Akt Pathway in Human Cancer Cells

    Get PDF
    BACKGROUND: Autophagy is an evolutionarily conserved protein degradation pathway. A defect in autophagy may contribute to tumorigenesis. Autophagy inducers could have a potential function in tumor prevention and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge Rhabdastrella globostellata, inhibited proliferation of human cancer cell lines Hep3B and A549 and induced caspase-independent cell death in both the cell lines. Further investigation showed that Rhabdastrellic acid-A induced autophagy of cancer cells determined by YFP-LC3 punctation and increased LC3-II. The pretreatment with autophagy inhibitor 3-MA inhibited Rhabdastrellic acid-A-induced cell death. Knockdown of autophagy-related gene Atg5 inhibited Rhabdastrellic acid-A-induced cell death in A549 cells. Also, phospho-Akt and its downstream targets significantly decreased after treatment with Rhabdastrellic acid-A in both cancer cell lines. Transfection of constitutive active Akt plasmid abrogated autophagy and cell death induced by Rhabdastrellic acid-A. CONCLUSIONS/SIGNIFICANCE: These results suggest that Rhabdastrellic acid-A could induce autophagy-associated cell death through blocking Akt pathway in cancer cells. It also provides the evidence that Rhabdastrellic acid-A deserves further investigation as a potential anticancer or cancer preventive agent

    A Non Mouse-Adapted Dengue Virus Strain as a New Model of Severe Dengue Infection in AG129 Mice

    Get PDF
    The spread of dengue (DEN) worldwide combined with an increased severity of the DEN-associated clinical outcomes have made this mosquito-borne virus of great global public health importance. Progress in understanding DEN pathogenesis and in developing effective treatments has been hampered by the lack of a suitable small animal model. Most of the DEN clinical isolates and cell culture-passaged DEN virus strains reported so far require either host adaptation, inoculation with a high dose and/or intravenous administration to elicit a virulent phenotype in mice which results, at best, in a productive infection with no, few, or irrelevant disease manifestations, and with mice dying within few days at the peak of viremia. Here we describe a non-mouse-adapted DEN2 virus strain (D2Y98P) that is highly infectious in AG129 mice (lacking interferon-α/β and -γ receptors) upon intraperitoneal administration. Infection with a high dose of D2Y98P induced cytokine storm, massive organ damage, and severe vascular leakage, leading to haemorrhage and rapid death of the animals at the peak of viremia. In contrast, very interestingly and uniquely, infection with a low dose of D2Y98P led to asymptomatic viral dissemination and replication in relevant organs, followed by non-paralytic death of the animals few days after virus clearance, similar to the disease kinetic in humans. Spleen damage, liver dysfunction and increased vascular permeability, but no haemorrhage, were observed in moribund animals, suggesting intact vascular integrity, a cardinal feature in DEN shock syndrome. Infection with D2Y98P thus offers the opportunity to further decipher some of the aspects of dengue pathogenesis and provides a new platform for drug and vaccine testing

    Characterization of the Molecular Determinants of Primary HIV-1 Vpr Proteins: Impact of the Q65R and R77Q Substitutions on Vpr Functions

    Get PDF
    Although HIV-1 Vpr displays several functions in vitro, limited information exists concerning their relevance during infection. Here, we characterized Vpr variants isolated from a rapid and a long-term non-progressor (LTNP). Interestingly, vpr alleles isolated from longitudinal samples of the LTNP revealed a dominant sequence that subsequently led to diversity similar to that observed in the progressor patient. Most of primary Vpr proteins accumulated at the nuclear envelope and interacted with host-cell partners of Vpr. They displayed cytostatic and proapoptotic activities, although a LTNP allele, harboring the Q65R substitution, failed to bind the DCAF1 subunit of the Cul4a/DDB1 E3 ligase and was inactive. This Q65R substitution correlated with impairment of Vpr docking at the nuclear envelope, raising the possibility of a functional link between this property and the Vpr cytostatic activity. In contradiction with published results, the R77Q substitution, found in LTNP alleles, did not influence Vpr proapoptotic activity

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al
    corecore