281 research outputs found

    Ipilimumab augments antitumor activity of bispecific antibody-armed T cells

    Get PDF
    BACKGROUND: Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). METHODS: PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt’s lymphoma cell line (Daudi). RESULTS: In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. CONCLUSIONS: Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies

    Microenvironment generated during EGFR targeted killing of pancreatic tumor cells by ATC inhibits myeloid-derived suppressor cells through COX2 and PGE\u3csub\u3e2\u3c/sub\u3e dependent pathway

    Get PDF
    Abstract Background Myeloid-derived suppressor cells (MDSCs) are one of the major components of the immune-suppressive network, play key roles in tumor progression and limit therapeutic responses. Recently, we reported that tumor spheres formed by breast cancer cell lines were visibly smaller in a Th1 enriched microenvironment with significantly reduced differentiation of MDSC populations in 3D culture. In this study, we investigated the mechanism(s) of bispecific antibody armed ATC mediated inhibition of MDSC in the presence or absence of Th1 microenvironment. Methods We used 3D co-culture model of peripheral blood mononuclear cells (PBMC) with pancreatic cancer cells MiaPaCa-2 [MiaE] and gemcitabine resistant MiaPaCa-GR [MiaM] cells to generate MDSC in the presence or absence of Th1 cytokines and EGFRBi armed ATC (aATC). Results We show significantly decreased differentiation of MDSC (MiaE, p\u3c0.005; MiaM, p\u3c0.05) in the presence of aATC with or without Th1 cytokines. MDSC recovered from control cultures (without aATC) showed potent ability to suppress T cell functions compared to those recovered from aATC containing co-cultures. Reduced accumulation of MDSC was accompanied by significantly lower levels of COX2 (p\u3c0.0048), PGE2 (p\u3c0.03), and their downstream effector molecule Arginase-1 (p\u3c0.01), and significantly higher levels of TNF-α, IL-12 and chemokines CCL3, CCL4, CCL5, CXCL9 and CXCL10 under aATC induced Th1 cytokine enriched microenvironment. Conclusions These data suggest aATC can suppress MDSC differentiation and attenuation of their suppressive activity through down regulation of COX2, PGE2 and ARG1 pathway that is potentiated in presence of Th1 cytokines, suggesting that Th1 enriching immunotherapy may be beneficial in pancreatic cancer treatment

    Self Consistent Molecular Field Theory for Packing in Classical Liquids

    Full text link
    Building on a quasi-chemical formulation of solution theory, this paper proposes a self consistent molecular field theory for packing problems in classical liquids, and tests the theoretical predictions for the excess chemical potential of the hard sphere fluid. Results are given for the self consistent molecular fields obtained, and for the probabilities of occupancy of a molecular observation volume. For this system, the excess chemical potential predicted is as accurate as the most accurate prior theories, particularly the scaled particle (Percus-Yevick compressibility) theory. It is argued that the present approach is particularly simple, and should provide a basis for a molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure

    Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    Get PDF
    Abstract Background Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. Methods ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. Results EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. Conclusion High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens
    • …
    corecore