22 research outputs found

    2-opt* operator.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Average service probability <i>r</i><sub><i>avg</i></sub> of three periods.

    No full text
    Average service probability ravg of three periods.</p

    Influence of different tabu tenure <i>t</i> on objective value.

    No full text
    Influence of different tabu tenure t on objective value.</p

    New instances based on three instances in the Solomon benchmark (C, R, and RC).

    No full text
    New instances based on three instances in the Solomon benchmark (C, R, and RC).</p

    Comparison of 50-request and 100-request instances in different environments.

    No full text
    Comparison of 50-request and 100-request instances in different environments.</p

    Swap* operator.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Comparison of the I-TS algorithm and CPLEX.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Parameter settings.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Fitness curve of total cost.

    No full text
    (a) 50-request instances. (b) 100-request instances.</p

    Relocation* operator.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div
    corecore