22 research outputs found
2-opt* operator.
This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div
Average service probability <i>r</i><sub><i>avg</i></sub> of three periods.
Average service probability ravg of three periods.</p
Influence of different tabu tenure <i>t</i> on objective value.
Influence of different tabu tenure t on objective value.</p
New instances based on three instances in the Solomon benchmark (C, R, and RC).
New instances based on three instances in the Solomon benchmark (C, R, and RC).</p
Comparison of 50-request and 100-request instances in different environments.
Comparison of 50-request and 100-request instances in different environments.</p
Swap* operator.
This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div
Comparison of the I-TS algorithm and CPLEX.
This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div
Parameter settings.
This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div
Relocation* operator.
This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div