197 research outputs found

    Pressure-driven metal-insulator transition in BiFeO3_3 from Dynamical Mean-Field Theory

    Full text link
    A metal-insulator transition (MIT) in BiFeO3_3 under pressure was investigated by a method combining Generalized Gradient Corrected Local Density Approximation with Dynamical Mean-Field Theory (GGA+DMFT). Our paramagnetic calculations are found to be in agreement with experimental phase diagram: Magnetic and spectral properties of BiFeO3 at ambient and high pressures were calculated for three experimental crystal structures R3cR3c, PbnmPbnm and Pm3ˉmPm\bar{3}m. At ambient pressure in the R3cR3c phase, an insulating gap of 1.2 eV was obtained in good agreement with its experimental value. Both R3cR3c and PbnmPbnm phases have a metal-insulator transition that occurs simultaneously with a high-spin (HS) to low-spin (LS) transition. The critical pressure for the PbnmPbnm phase is 25-33 GPa that agrees well with the experimental observations. The high pressure and temperature Pm3ˉmPm\bar{3}m phase exhibits a metallic behavior observed experimentally as well as in our calculations in the whole range of considered pressures and undergoes to the LS state at 33 GPa where a PbnmPbnm to Pm3ˉmPm\bar{3}m transition is experimentally observed. The antiferromagnetic GGA+DMFT calculations carried out for the PbnmPbnm structure result in simultaneous MIT and HS-LS transitions at a critical pressure of 43 GPa in agreement with the experimental data

    Doped Mott insulator as the origin of heavy Fermion behavior in LiV2O4

    Full text link
    We investigate the electronic structure of LiV2O4, for which heavy fermion behavior has been observed in various experiments, by the combination of the local density approximation and dynamical mean field theory. To obtain results at zero temperature, we employ the projective quantum Monte Carlo method as an impurity solver. Our results show that the strongly correlated a1g band is a lightly doped Mott insulator which -at low temperatures- shows a sharp (heavy) quasiparticle peak just above the Fermi level, which is consistent with recent photoemission experiment by Shimoyamada et al. [Phys. Rev. Lett. 96 026403 (2006)].Comment: 4 pages, 5 figure

    Temperature dependent correlations in covalent insulators

    Full text link
    Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model of covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.Comment: 4 pages, 4 figure

    Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2

    Full text link
    We have investigated anisotropy in magnetic and electrical transport properties of Fe1-xCrxSb2 (0<= x <=1) single crystals. The magnetic ground state of the system evolves from paramagnetic to antiferromagnetic with gradual substitution of Fe with Cr. Anisotropy in electrical transport diminishes with increased Cr substitution and fades away by x=0.5. We find that the variable range hopping (VRH) conduction mechanism dominates at low temperatures for 0.4<= x <=0.75.Comment: 5 pages, 6 figure

    LDA+DMFT Spectral Functions and Effective Electron Mass Enhancement in Superconductor LaFePO

    Full text link
    In this Letter we report the first LDA+DMFT results (method combining Local Density Approximation with Dynamical Mean-Field Theory) for spectral properties of superconductor LaFePO. Calculated {\bf k}-resolved spectral functions reproduce recent angle-resolved photoemission spectroscopy (ARPES) data [D. H. Lu {\it et al}., Nature {\bf 455}, 81 (2008)]. Obtained effective electron mass enhancement values m/mm^{*}/m\approx 1.9 -- 2.2 are in good agreement with infrared and optical studies [M. M. Qazilbash {\it et al}., Nature Phys. {\bf 5}, 647 (2009)], de Haas--van Alphen, electrical resistivity, and electronic specific heat measurements results, that unambiguously evidence for moderate correlations strength in LaFePO. Similar values of m/mm^{*}/m were found in the other Fe-based superconductors with substantially different superconducting transition temperatures. Thus, the dynamical correlation effects are essential in the Fe-based superconductors, but the strength of electronic correlations does not determine the value of superconducting transition temperature.Comment: 4 pages, 3 figure

    Specific features of the electrical resistance of half-metallic ferromagnetic alloys Co2CrAl and Co2CrGa

    Full text link
    It has been shown by comparing the results of studying the electrical and magnetic properties of the half-metallic ferromagnetic Heusler alloys Co2CrAl and Co2CrGa with the calculations of their electronic structure that high values of the electrical resistivity ρ are caused by a disordered distribution of atoms over the sites of the L21 cubic structure, and the anomalous behavior of ρ(T) is associated with the transformation of the electronic spectrum due to the ferromagnetic-to-paramagnetic transition. © 2013 Pleiades Publishing, Ltd

    Internal energy and parameters of the order-disorder phase transition in titanium monoxide TiO y

    Full text link
    Quantum-mechanical ab initio calculations are used to simulate the free energy functions for titanium monoxide TiO y . The effect of the long-range order of the Ti5O5 type superstructure on the internal energy of the compound is studied by the supercell method. The dependences of the configuration entropy and free energy on the long-range order parameter are determined. It is found that the order-disorder phase transition in titanium monoxide must occur in accordance with the mechanism of the first-order phase transition with a critical value of the long-range order parameter of 0.971. The calculated parameters of the phase transition are compared with the experimental data and the results obtained using the model of point charges and by calculating the Madelung energy. It is concluded that the short-range order and the phonon entropy must be taken into account in calculating the equilibrium phase diagrams for strongly nonstoichiometric compounds. © 2013 Pleiades Publishing, Ltd

    Electronic structure and stability of nonstoichiometric titanium monoxide TiOy with structural vacancies in one of the sublattices

    Full text link
    The electronic structure of nonstoichiometric titanium monoxide TiOy with different compositions y, which contains structural vacancies either in the metallic sublattice or in the nonmetallic sublattice, has been investigated using the supercell method within the DFT-GGA approximation with pseudopotentials. The cases of ordered and disordered arrangements of vacancies have been considered. It has been found that the complete removal of vacancies from the sublattice is energetically unfavorable, and the ordering of oxygen vacancies according to the type of the Ti6O5□1 superstructure, as well as titanium vacancies according to the Ti5black small square1O6 type, does not lead to the stabilization of the B1 basic structure of titanium monoxide. © 2013 Pleiades Publishing, Ltd

    Vacancies in ordered and disordered titanium monoxide: Mechanism of B1 structure stabilization

    Full text link
    The electronic structure and stability of three phases of titanium monoxide TiOy with B1 type of the basic structure have been studied. Cubic phase without structural vacancies, TiO, and two phases with structural vacancies, monoclinic Ti5O5 and cubic disordered TiO 1.0, was treated by means of first-principles calculations within the density functional theory with pseudo-potential approach based on the plane wave's basis. The ordered monoclinic phase Ti5O5 was found to be the most stable and the cubic TiO without vacancies the less stable one. The role of structural vacancies in the titanium sublattice is to decrease the Fermi energy, the role of vacancies in the oxygen sublattice is to contribute to the appearance of Ti-Ti bonding interactions through these vacancies and to reinforce the Ti-Ti interactions close to them. Listed effects are significantly pronounced if the vacancies in the titanium and oxygen sublattices are associated in the so called "vacancy channels" which determine the formation of vacancy ordered structure of monoclinic Ti5O 5-type. © 2013 Elsevier Inc
    corecore