2,417 research outputs found

    Quantum Optics in Maxwell's Fish Eye Lens with Single Atoms and Photons

    Full text link
    We investigate the quantum optical properties of Maxwell's two-dimensional fish eye lens at the single-photon and single-atom level. We show that such a system mediates effectively infinite-range dipole-dipole interactions between atomic qubits, which can be used to entangle multiple pairs of distant qubits. We find that the rate of the photon exchange between two atoms, which are detuned from the cavity resonances, is well described by a model, where the photon is focused to a diffraction-limited area during absorption. We consider the effect of losses on the system and study the fidelity of the entangling operation via dipole-dipole interaction. We derive our results analytically using perturbation theory and the Born-Markov approximation and then confirm their validity by numerical simulations. We also discuss how the two-dimensional Maxwell's fish eye lens could be realized experimentally using transformational plasmon optics.Comment: 20 pages, 7 figure

    Dynamical Crystallization in the Dipole Blockade of Ultracold Atoms

    Full text link
    We describe a method for controlling many-body states in extended ensembles of Rydberg atoms, forming crystalline structures during laser excitation of a frozen atomic gas. Specifically, we predict the existence of an excitation number staircase in laser excitation of atomic ensembles into Rydberg states. Each step corresponds to a crystalline state with a well-defined of regularly spaced Rydberg atoms. We show that such states can be selectively excited by chirped laser pulses. Finally, we demonstarte that, sing quantum state transfer from atoms to light, such crystals can be used to create crystalline photonic states and can be probed via photon correlation measurements
    • …
    corecore