2,467 research outputs found

    Crossover from Kramers to phase-diffusion switching in hysteretic DC-SQUIDs

    Full text link
    We have measured and propose a model for switching rates in hysteretic DC-SQUID in the regime where phase diffusion processes start to occur. We show that the switching rates in this regime are smaller than the rates given by Kramers' formula due to retrapping of Josephson phase. The retrapping process, which is affected by the frequency dependent impedance of the environment of the DC-SQUID, leads to a peaked second moment of the switching distribution as a function of temperature. The temperature where the peaks occur are proportional to the critical current of the DC- SQUID.Comment: 4 pages, 4 figure

    Self-contained Kondo effect in single molecules

    Full text link
    Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.Comment: 4 pages, 5 figures (eps

    Organic layer formation and sorption of U(vi) on acetamide diethylphosphonate-functionalized mesoporous silica.

    Get PDF
    Acetamide diethylphosphonate (AcPhos)-functionalized silica has been shown to have a high affinity for U(vi) in pH 2-3 nitric acid. Previous work with AcPhos-functionalized silica has focused on actinide and lanthanide extraction under various conditions, but has shown poor reproducibility in the functionalization process. For this work, four AcPhos-functionalized SBA-15 materials were synthesized and evaluated based on their U(vi) sorption capacity and their stability in nitric acid. Materials synthesized using pyridine as a basic catalyst were shown to form a greater fraction of polymeric structures at the silica surface, which correlated with higher structural integrity upon contact with acidic solutions. Single-pulse 31P and 1H NMR spectra of these materials show evidence of phosphonic acid groups, as well as hydrogen-bonding interactions either between ligands or with the silica surface. Additionally, these materials were found to have significantly higher U(vi) sorption capacities and Keq values than the materials synthesized without pyridine, most likely due to the ion-exchange properties of the phosphonic acid groups. The 31P-31P DQ-DRENAR NMR technique was used to compare the average strength of dipolar coupling interactions between phosphorus atoms for the four materials. Because the strength of dipolar coupling interactions depends on the number and proximity of neighboring spins, this technique provides information about the average density of ligands on the surface. The conventional functionalization procedure yielded materials with the lowest average surface ligand density, while those using extended reaction times and the pyridine base catalyst yielded materials with higher surface ligand densities

    Action of liproprotein lipase on apoprotein-depleted chylomicrons

    Full text link

    THEORY OF PHASE-LOCKING IN SMALL JOSEPHSON JUNCTION CELLS

    Full text link
    Within the RSJ model, we performed a theoretical analysis of phase-locking in elementary strongly coupled Josephson junction cells. For this purpose, we developed a systematic method allowing the investigation of phase-locking in cells with small but non-vanishing loop inductance.The voltages across the junctions are found to be locked with very small phase difference for almost all values of external flux. However, the general behavior of phase-locking is found to be just contrary to that according to weak coupling. In case of strong coupling there is nearly no influence of external magnetic flux on the phases, but the locking-frequency becomes flux-dependent. The influence of parameter splitting is considered as well as the effect of small capacitive shunting of the junctions. Strongly coupled cells show synchronization even for large parameter splitting. Finally, a study of the behavior under external microwave radiation shows that the frequency locking-range becomes strongly flux-dependent, whereas the locking frequency itself turns out to be flux-independent.Comment: 26 pages, REVTEX, 9 PS figures appended in uuencoded form at the end, submitted to Phys. Rev. B

    Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy.

    Get PDF
    The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds
    • …
    corecore