6 research outputs found

    Indoor multipath effect study on the Locata system

    Get PDF
    GNSS has become one of the most wide- spread measurement technologies, allowing cm-level positioning accuracy using RTK or Network RTK. Unfortunately, the system’s major drawbacks are the requirement for a clear view of the sky and accu- racy dependent on the geometric distribution of the satellites, not only varying throughout the day but also prone to location specific problems. With wide- spread utilisation of GNSS for monitoring of man- made structures and other civil engineering tasks, such shortcomings can be critical. One of possible solution is the deployment of a sup- porting system, such as Locata – a terrestrial posi- tioning technology, which mitigates the need for a clear view of the sky and provides system integrity control. This paper, part of the proposed integration feasibil- ity study, presents Locata performance indoors, its capacity and mitigation methods

    GNSS jamming resilience for close to shore navigation in the Northern Sea

    Get PDF
    avigational error accounts for half of the accidents and serious incidents in close to shore maritime transport in Norway predominantly due to the rapidly changing weather conditions and the dangerous nature of the narrow inshore waters found along the Norwegian coast. This creates a dependence on Differential Global Positioning System (DGPS) use and any disruption to this service can lead to an increased accident rate. The aim of this paper is to research the jamming vulnerability of existing maritime receivers and to understand if an upgrade to a multi-constellation or multi-frequency receiver would improve system resilience. The novelty of this work is a comparison of jamming resilience between different combinations of multiple constellations (GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS)) and multi-frequency Global Navigation Satellite System (GNSS) signals. This paper presents results from GNSS jamming trials conducted in the northern part of Norway, confirming previous research and indicating that typical maritime GPS receivers are easy to jam and may produce erroneous positional information. Results demonstrate that the single frequency multi-constellation receivers offer better jamming resilience than multi-frequency (L1 + L2) GPS receivers. Further, the GLONASS constellation demonstrated a better resilience than GPS. Results demonstrate a known correlation between GPS L1 and L2 frequencies, as well as a probable over-dependence on GPS for signal acquisition, meaning that no signal can be received without GPS L1 present. With these limitations in mind, the authors suggest that the most economic update to the single frequency GPS receivers, currently used for maritime applications, should be multi-constellation GPS + GLONASS receivers. This solution is cheaper and it also offer better jamming resistance for close to shore navigation than dual frequency receivers

    Monitoring rail infrastructure using multisensor navigation on a moving platform and autonomous robots

    Get PDF
    RailSat aims to use Global Navigation Satellite System (GNSS) to monitor and maintain railway assets and its surrounding environment by railway asset owners and/or other relevant stakeholders. The rail sector is looking for continuous monitoring solutions which have no impact on the train service, both wayside (track bound) and onboard (train bound), which require accurate positioning while travelling at high speeds (>120kmh). This paper focuses on the combination of positioning data from traditional GNSS/INS system with processed LIDAR point cloud and discusses real-life results from the Snake Pass, Peak District, England. Data have been collected using a dedicated multisensory van but the nature of the road allows us to draw conclusions relevant to the rail industry. This paper discusses the proposed deployment of a mobile LiDAR monitoring system consisting of a set of laser scanners and a navigation component. While the LIDAR component is capable of centimetre accuracy, it is limited by the navigation accuracy, predominantly affected by the difficult railway environment, frequent multipath and NLOS interference combined with a loss of signal next to the monitoring structures itself (bridges, cuttings, tunnels, embankments etc.), making precise positioning the biggest challenge. The proposed navigation system combines IMU positioning system with a computer vision system capable of localisation using features in the natural environment. This paper outlines the combination of the proposed navigation system with the LIDAR’s information, which provides two ways of correcting navigation trajectory in post-processing

    Detection of UWB ranging measurement quality for collaborative indoor positioning

    Get PDF
    Wireless communication signals have become popular alternatives for indoor positioning and navigation due to lack of navigation satellite signals in such environments. The signal characteristics determine the method used for positioning as well as the positioning accuracy. Ultra-wideband (UWB) signals, with a typical bandwidth of over 1 GHz, overcome multipath problems in complicated environments. Hence, potentially achieves centimetre-level ranging accuracy in open areas. However, signals can be disrupted when placed in environments with obstructions and cause large ranging errors. This paper proposes a ranging measurement quality indicator (RQI) which detects the UWB measurement quality based on the received signal strength pattern. With a detection validity of more than 83%, the RQI is then implemented in a ranging-based collaborative positioning system. The relative constraint of the collaborative network is adjusted adaptively according to the detected RQI. The proposed detection and positioning algorithm improves positioning accuracy by 80% compared to non-adaptive collaborative positioning

    On the improvements of the single point positioning accuracy with Locata technology

    No full text
    This work focuses on the performances of Locata technology in single point positioning using different firmware versions (v2.0 and v4.2). The main difference is that the Locata transmitters with firmware v2.0 are single frequency, whereas in the v4.2, they are dual frequency. The performance of the different firmware versions has been measured in different environments including an urban canyon-like environment and a more open environment on the roof of the Nottingham Geospatial Building. The results obtained with firmware v4.2 show that with more available signals, cycle slips can be more easily detected, together with the improvement of the detection of multipath fading on the received signal. As a result, the noise level on the carrier phase measurements recorded with firmware v4.2 is equal on average to a third of the level of noise on the measurements recorded with firmware v2.0. In addition, with either firmware, the accuracy of the position is at the sub-centimeter level on the East and North coordinates. The Up coordinate accuracy is generally less accurate and more sensitive to the geometry of the network in our experiments. We then show the importance of the geometry of the Locata network on the accuracy of Locata positioning system through the demonstration of the relationship between the dilution of precision value and the confidence ellipse. We also demonstrate that the model of the noise on the Locata coordinates is a white Gaussian noise with the help of the autocorrelation function. To some extent, this technique can help to detect whether the Wi-Fi technology is interfering with the Locata technology and degrades the positioning accuracy
    corecore