21 research outputs found

    High incidence of superficial and deep medial collateral ligament injuries in ‘isolated’ anterior cruciate ligament ruptures: a long overlooked injury

    No full text
    Purpose!#!In anterior cruciate ligament (ACL) injuries, concomitant damage to peripheral soft tissues is associated with increased rotatory instability of the knee. The purpose of this study was to investigate the incidence and patterns of medial collateral ligament complex injuries in patients with clinically 'isolated' ACL ruptures.!##!Methods!#!Patients who underwent ACL reconstruction for complete 'presumed isolated' ACL rupture between 2015 and 2019 were retrospectively included in this study. Patient's characteristics and intraoperative findings were retrieved from clinical and surgical documentation. Preoperative MRIs were evaluated and the grade and location of injuries to the superficial MCL (sMCL), dMCL and the posterior oblique ligament (POL) recorded. All patients were clinically assessed under anaesthesia with standard ligament laxity tests.!##!Results!#!Hundred patients with a mean age of 22.3 ± 4.9 years were included. The incidence of concomitant MCL complex injuries was 67%. sMCL injuries occurred in 62%, dMCL in 31% and POL in 11% with various injury patterns. A dMCL injury was significantly associated with MRI grade II sMCL injuries, medial meniscus 'ramp' lesions seen at surgery and bone oedema at the medial femoral condyle (MFC) adjacent to the dMCL attachment site (p < 0.01). Logistic regression analysis identified younger age (OR 1.2, p < 0.05), simultaneous sMCL injury (OR 6.75, p < 0.01) and the presence of bone oedema at the MFC adjacent to the dMCL attachment site (OR 5.54, p < 0.01) as predictive factors for a dMCL injury.!##!Conclusion!#!The incidence of combined ACL and medial ligament complex injuries is high. Lesions of the dMCL were associated with ramp lesions, MFC bone oedema close to the dMCL attachment, and sMCL injury. Missed AMRI is a risk factor for ACL graft failure from overload and, hence, oedema in the MCL (especially dMCL) demands careful assessment for AMRI, even in the knee lacking excess valgus laxity. This study provides information about specific MCL injury patterns including the dMCL in ACL ruptures and will allow surgeons to initiate individualised treatment.!##!Level of evidence!#!III

    Anterior cruciate ligament autograft maturation on sequential postoperative MRI is not correlated with clinical outcome and anterior knee stability

    No full text
    Purpose!#!Magnetic resonance imaging (MRI) signal intensity is correlated to structural postoperative changes of the anterior cruciate ligament (ACL) autograft. The purpose of this study was to investigate the ACL autograft maturation process via MRI over 2 years postoperatively, compare it to a native ACL signal and correlate the results with clinical outcome, return to preinjury sports levels, and knee laxity measurements.!##!Methods!#!ACL autograft signal intensity was measured in 17 male patients (age, 28.3 ± 7.0 years) who underwent ACL reconstruction with hamstring autograft at 6 weeks, 3-, 6-, 12-, and 24 months postoperatively by 3 Tesla MRI. Controls with an intact ACL served as control group (22 males, 8 females; age, 26.7 ± 6.8 years). An ACL/PCL ratio (APR) and ACL/muscle ratio (AMR) was calculated to normalize signals to soft tissue signal. APR and AMR were compared across time and to native ACL signal. Clinical outcome scores (IKDC, Lysholm), return to preinjury sports levels (Tegner activity scale), and knee laxity measurement (KT-1000) were obtained and correlated to APR and AMR at the respective time points.!##!Results!#!The APR and AMR of the ACL graft changed significantly from the lowest values at 6 weeks to reach the highest intensity after 6 months (p < 0.001). Then, the APR and AMR were significantly different from a native ACL 6 months after surgery (p < 0.01) but approached the APR and AMR of the native ACL at 1- and 2 years after surgery (p < 0.05). The APR changed significantly during the first 2 years postoperatively in the proximal (p < 0.001), mid-substance (p < 0.001), and distal (p < 0.01) intraarticular portion of the ACL autograft. A hypo-intense ACL MRI signal was associated with return to the preinjury sports level (p < 0.05). No correlation was found between ACL MRI graft signal and clinical outcome scores or KT-1000 measurements.!##!Conclusion!#!ACL grafts undergo a continuous maturation process in the first 2 years after surgery. The ACL graft signals became hyper-intense 6 months postoperatively and approximated the signal of a native intact ACL at 12- and 24 months. Patients with a hypo-intense ACL graft signal at 2 years follow-up were more likely to return to preinjury sports levels. The results of the present study provide a template for monitoring the normal ACL maturation process via MRI in case of prolonged clinical symptoms. However, subjective outcome and clinical examination of knee laxity remain important to assess the treatment success and to allow to return to sports.!##!Level of evidence!#!III

    Medial meniscal ramp lesions in ACL-injured elite athletes are strongly associated with medial collateral ligament injuries and medial tibial bone bruising on MRI

    No full text
    Purpose!#!Medial menisco-capsular separations (ramp lesions) are typically found in association with anterior cruciate ligament (ACL) deficiency. They are frequently missed preoperatively due to low MRI sensitivity. The purpose of this article was to describe demographic and anatomical risk factors for ramp lesions, and to identify concomitant lesions and define their characteristics to improve diagnosis of ramp lesions on MRI.!##!Methods!#!Patients who underwent anterior cruciate ligament (ACL) reconstruction between September 2015 and April 2019 were included in this study. The presence/absence of ramp lesions was recorded in preoperative MRIs and at surgery. Patients' characteristics and clinical findings, concomitant injuries on MRI and the posterior tibial slope were evaluated.!##!Results!#!One hundred patients (80 male, 20 female) with a mean age of 22.3 ± 4.9 years met the inclusion criteria. The incidence of ramp lesions diagnosed at surgery was 16%. Ramp lesions were strongly associated with injuries to the deep MCL (dMCL, p < 0.01), the superficial medial collateral ligament (sMCL, p < 0.01), and a small medial-lateral tibial slope asymmetry (p < 0.05). There was also good correlation between ramp lesions and bone oedema in the posterior medial tibia plateau (MTP, p < 0.05) and medial femoral condyle (MFC, p < 0.05). A dMCL injury, a smaller differential medial-lateral tibial slope than usual, and the identification of a ramp lesion on MRI increases the likelihood of finding a ramp lesion at surgery. MRI sensitivity was 62.5% and the specificity was 84.5%.!##!Conclusion!#!The presence on MRI of sMCL and/or dMCL lesions, bone oedema in the posterior MTP and MFC, and a smaller differential medial-lateral tibial slope than usual are highly associated with ramp lesions visible on MRI. Additionally, a dMCL injury, a flatter lateral tibial slope than usual, and the identification of a ramp lesion on MRI increases the likelihood of finding a ramp lesion at surgery. Knowledge of the risk factors and secondary injury signs associated with ramp lesions facilitate the diagnosis of a ramp lesion preoperatively and should raise surgeons' suspicion of this important lesion.!##!Level of evidence!#!Diagnostic study, Level III

    Proximal radius fracture morphology following axial force impact: a biomechanical evaluation of fracture patterns

    No full text
    Abstract Background The most common location for articular fractures of the radial head is often reported to be the anterior lateral aspect of the radial head with the arm in neutral position. However, these findings mainly base on clinical observations rather than precise biomechanical measurements. The purpose of this study was to evaluate the formation of proximal radius fractures, the association between axial forces and fracture morphology, energy to failure and bone stiffness in a biomechanical in-vitro setup. Methods 18 fresh-frozen cadaveric radii performed axial load compression with 10 mm/min loading until bone failure. Energy to failure and bone stiffness were recorded. Proximal radial head fracture morphology and affection of the anterolateral quadrant were optically analyzed. Results All radii survived a compression load of 500 N. The mean compressive forces that lead to failure were 2,56 kN (range 1,30 – 7,32). The mean stiffness was 3,5 kN/mm (range 2,0 – 4,9). 11 radial neck fractures and 7 radial neck and radial head multifragment fractures were documented. The anterolateral quadrant was involved in 78% of tested radii. Conclusion The anterolateral quadrant of the radial head (in neutral position of the forearm) is confirmed to be the most common location for articular radial head fractures in a biomechanical setting. In case of a fall on the outstretched arm radial neck fractures should be securely ruled out due to prior occurrence to radial neck and head fractures

    Critical shoulder angle combined with age predict five shoulder pathologies: a retrospective analysis of 1000 cases

    No full text
    Abstract Background Acromial morphology has previously been defined as a risk factor for some shoulder pathologies. Yet, study results are inconclusive and not all major shoulder diseases have been sufficiently investigated. Thus, the aim of the present study was to analyze predictive value of three radiological parameters including the critical shoulder angle, acromion index, and lateral acromion angle in relationship to symptomatic patients with either cuff tear arthropathy, glenohumeral osteoarthritis, rotator cuff tear, impingement, and tendinitis calcarea. Methods A total of 1000 patients’ standardized true-anteroposterior radiographs were retrospectively assessed. Receiver-operating curve analyses and multinomial logistic regression were used to examine the association between shoulder pathologies and acromion morphology. The prediction model was derived from a development cohort and applied to a validation cohort. Prediction model’s performance was statistically evaluated. Results The majority of radiological measurements were significantly different between shoulder pathologies, but the critical shoulder angle was an overall better parameter to predict and distinguish between the different pathologies than the acromion index or lateral acromion angle. Typical critical shoulder angle-age patterns for the different shoulder pathologies could be detected. Patients diagnosed with rotator cuff tears had the highest, whereas patients with osteoarthritis had the lowest critical shoulder angle. The youngest patients were in the tendinitis calcarea and the oldest in the cuff tear arthropathy group. Conclusions The present study showed that critical shoulder angle and age, two easily assessable variables, adequately predict different shoulder pathologies in patients with shoulder complaints

    Neither lateral patellar facet nor patellar size are altered in patellofemoral unstable patients: a comparative magnetic resonance imaging analysis

    No full text
    PURPOSE It remains unclear if morphologic patterns of the patella itself predispose to patellar instability. This study examined established patellar landmarks in relation to the femoral condyle width to clarify differences of patellar morphologies in patellofemoral stable and unstable patients. METHODS Magnetic Resonance Imaging of 50 subjects (20.7 ± 4.4 years; 17 males, 33 females) with patellofemoral instability (study group, SG) and 50 subjects (25.3 ± 5.8 years; 31 males, 19 females) with anterior cruciate ligament rupture (control group, CG) were analyzed. Corresponding patellar value indices (PW-I; LPF-I 1; LPF-I 2) in relation to the femoral condyle width (FCW) were evaluated after the measurement of absolute patellar dimension [patellar width (PW); direct length of the lateral patellar facet (LPF-1); projected length of the lateral patellar facet (LPF-2)]. The patellar shape according to Wiberg, trochlear dysplasia, patellar height, and tibial tubercle-trochlear groove (TT-TG) distance were determined. RESULTS The SG showed a significantly longer absolute (LPF 2) (P = 0.041) and relative (LPF-I 1, LPF-I 2) (P < 0.001) lateral facet of the patella. No significant differences were evaluable for the relative patellar width (PW-I) (ns). A patellar shape type 3 (P = 0.001) as well as a higher position of the patella and TT-TG-distance (P < 0.001) were significantly more often present in the SG. CONCLUSION There are several bony alterations associated with patellofemoral instability, but our data did not show a significantly smaller lateral patellar facet or relative patellar width that could facilitate a patellar dislocation. This helps surgeons, that are considering to surgically address the patella in cases of patellofemoral instability, to better understand its morphologic pattern. LEVEL OF EVIDENCE III

    Intact revision rotator cuff repair stabilizes muscle atrophy and fatty infiltration after minimum follow up of two years

    No full text
    Abstract Background The extent of fatty infiltration and rotator cuff (RC) atrophy is crucial for the clinical results after rotator cuff repair (RCR). The purpose of this study was to evaluate changes in fatty infiltration and RC atrophy after revision RCR and to correlate them with functional outcome parameters. Methods Patients who underwent arthroscopic revision RCR for symptomatic recurrent full-thickness tear of the supraspinatus tendon between 2008 and 2014 and were retrospectively reviewed with a minimum follow up of 2 years. Magnetic resonance imaging (MRI) was performed pre- and postoperatively to assess 1) tendon integrity after revision RCR according to Sugaya classification, (2) RC atrophy according to Thomazeau classification, and (3) fatty infiltration according to Fuchs MRI classification. Constant score (CS) and the American Shoulder and Elbow Surgeon (ASES) score were used to correlate functional outcome, tendon integrity, and muscle degeneration. Results 19 patients (17 males and 2 females) with a mean age of 57.5 years (range, 34 to 72) were included into the study at a mean follow-up of 50.3 months (range, 24 – 101). At final evaluation, 9 patients (47%) presented with intact RCR and 10 patients (53%) suffered a re-tear after revision repair. No progress of fatty infiltration was observed postoperatively in the group with intact RC, atrophy progressed in only 1 out of 9 patient (11%). Fatty infiltration progressed in 5/10 patients (50%) and RC atrophy increased in 2/10 patients (20%) within the re-tear group. CS (42.7 ± 17.7 preop, 65.2 ± 20.1 postop) and ASES (47.7 ± 17.2 preop, 75.4 ± 23.7 postop) improved significantly from pre- to postoperatively (p < 0.001). A positive correlation between fatty infiltration and RC integrity was detected (r = 0.77, p < 0.01). No correlation between clinical outcome and tendon integrity or RC atrophy was observed. Conclusion Arthroscopic revision RCR leads to reliable functional outcomes even in case of a recurrent RC retear. An intact RCR maintains the preoperative state of fatty infiltration and muscle atrophy but does not lead to muscle regeneration. Level of evidence Level IV; Therapeutic study

    Distal femoral torsional osteotomy increases the contact pressure of the medial patellofemoral joint in biomechanical analysis

    No full text
    PurposeTorsional osteotomy of the distal femur allows anatomic treatment of patellofemoral instability and patellofemoral pain syndrome in cases of increased femoral antetorsion. The purpose of this study was to investigate the effects of distal femoral torsional osteotomy on pressure distribution of the medial and lateral patellar facet.MethodsNine fresh frozen human knee specimens were embedded in custom-made 3D-printed casts and tested with a robotic arm. Torsional osteotomy could be simulated ranging from increased femoral antetorsion of 25 degrees with a corresponding lateralization of the patella to an overcorrected value of 5 degrees of femoral antetorsion. The peak and mean lateral and medial compartment pressure was measured in 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees flexion beginning with neutral anatomic muscle rotation.ResultsThe medial aspect of the patella showed a significant influence of femoral torsion with an increase of mean and peak pressure in all flexion angles with progressive derotation from 15 degrees external rotation to 5 degrees internal rotation (p=0.004). The overall pressure difference was highest in near extension and stayed on a constant level with further flexion. On the lateral facet, the derotation resulted in decrease of pressure in near extension; however, it had no significant influence on the mean and peak pressure through the different torsion angles (n.s.). Unlike on the medial facet, a significant consistent increase of peak pressure from 0 degrees to 90 degrees flexion could be shown (p=0.022) on the lateral patella aspect.ConclusionDistal femoral torsional osteotomy to correct pathological femoral antetorsion leads to a redistribution of retropatellar pressure. External derotation leads to an increased peak pressure on the medial patellar facet and can impair simultaneous cartilage repair. However, as the lateral patellofemoral load decreases, it has a potential in preventing patellofemoral osteoarthritis

    Exhaustion of tumor-specific CD8âș T cells in metastases from melanoma patients.

    Get PDF
    In chronic viral infections, CD8âș T cells become functionally deficient and display multiple molecular alterations. In contrast, only little is known of self- and tumor-specific CD8âș T cells from mice and humans. Here we determined molecular profiles of tumor-specific CD8âș T cells from melanoma patients. In peripheral blood from patients vaccinated with CpG and the melanoma antigen Melan-A/MART-1 peptide, we found functional effector T cell populations, with only small but nevertheless significant differences in T cells specific for persistent herpesviruses (EBV and CMV). In contrast, Melan-A/MART-1-specific T cells isolated from metastases from patients with melanoma expressed a large variety of genes associated with T cell exhaustion. The identified exhaustion profile revealed extended molecular alterations. Our data demonstrate a remarkable coexistence of effector cells in circulation and exhausted cells in the tumor environment. Functional T cell impairment is mediated by inhibitory receptors and further molecular pathways, which represent potential targets for cancer therapy

    Effect of Lower Limb Alignment in Medial Meniscus–Deficient Knees on Tibiofemoral Contact Pressure

    No full text
    Background: Degenerative medial meniscal tears and subsequent partial meniscal resection compromise meniscal function and lead to an overload of the medial compartment. In addition, lower limb alignment plays a key role in load distribution between the medial and lateral knee compartments, and varus alignment is a potential risk factor for medial osteoarthritis. Purpose/Hypothesis: The purpose of this biomechanical study was to investigate the effect of valgus and varus alignment on peak pressure and contact area in knees with concomitant horizontal medial meniscal tears and subsequent leaflet resection. It was hypothesized that varus alignment in combination with meniscal loss leads to the highest peak pressure within the medial compartment. Study Design: Controlled laboratory study. Methods: Six fresh-frozen human cadaveric knees were axially loaded using a 1000-N compressive load in full extension with the mechanical axis rotated to intersect the tibial plateau at 40%, 45%, 50%, 55%, and 60% of its width (TPW) to simulate varus and valgus alignment. Tibiofemoral peak contact pressure and contact area of the medial and lateral compartments were determined using pressure-sensitive foils in each of 4 different meniscal conditions: intact, 15-mm horizontal tear of the posterior horn, inferior leaflet resection, and resection of both leaflets. Results: The effect of alignment on peak pressure (normalized to the neutral axis) within the medial compartment in cases of an intact meniscus was measured as follows: varus shift resulted in a mean increase in peak pressure of 18.5% at 45% of the TPW and 37.4% at 40% of the TPW, whereas valgus shift led to a mean decrease in peak pressure of 8.7% at 55% of the TPW and 23.1% at 60% of the TPW. Peak pressure changes between the intact meniscus and resection within the medial compartment was less in valgus-aligned knees (0.21 MPa at 60% TPW, 0.59 MPa at 50% TPW, and 0.76 MPa at 40% TPW). Contact area was significantly reduced after partial meniscal resection in the neutral axis (intact, 553.5 +/- 87.6 mm(2); resection of both leaflets, 323.3 +/- 84.2 mm(2); P < .001). This finding was consistent in any alignment. Conclusion: Both partial medial meniscal resection and varus alignment led to an increase in medial compartment peak pressure. Valgus alignment prevented medial overloading by decreasing contact pressure even after partial meniscal resection. A horizontal meniscal tear did not influence peak pressure and contact area even in varus alignmen
    corecore