10 research outputs found

    Enhancing the Domain Wall Conductivity in Lithium Niobate Single Crystals

    No full text
    Domain walls (DWs) in ferroelectric/ferroic materials have been a central research focus for the last 50 years; DWs bear a multitude of extraordinary physical parameters within a unit-cell-sized lateral confinement. Especially, one outstanding feature has recently attracted a lot of attention for room-temperature applications, which is the potential to use DWs as two-dimensional (2D) conducting channels that completely penetrate bulk compounds. Domain wall currents in lithium niobate (LNO) so far lie in the lower pA regime. In this work, we report on an easy-to-use and reliable protocol that allows enhancing domain wall conductivity (DWC) in single-crystalline LNO (sc-LNO) by 3 to 4 orders of magnitude. sc-LNO thus has become one of the most prospective candidates to engineer DWC applications, notably for domain wall transport both with and without photoexcitation. DWs were investigated here for several days to weeks, both before and after DWC enhancement. 2D local-scale inspections were carried out using adequate local-probe techniques, <i>i</i>.<i>e</i>., piezoresponse force microscopy and conductive atomic force microscopy, while Cerenkov second-harmonic generation was applied for mapping the DW constitution in three-dimensional space across the full LNO single crystal. The comparison between these nano- and microscale inspections allows us to unambiguously correlate the DW inclination angle α close to the sample surface to the measured domain wall current distribution. Moreover, ohmic or diode-like electronic transport characteristics along such DWs can be readily interpreted when analyzing the DW inclination profile

    Enhancing the Domain Wall Conductivity in Lithium Niobate Single Crystals

    No full text
    Domain walls (DWs) in ferroelectric/ferroic materials have been a central research focus for the last 50 years; DWs bear a multitude of extraordinary physical parameters within a unit-cell-sized lateral confinement. Especially, one outstanding feature has recently attracted a lot of attention for room-temperature applications, which is the potential to use DWs as two-dimensional (2D) conducting channels that completely penetrate bulk compounds. Domain wall currents in lithium niobate (LNO) so far lie in the lower pA regime. In this work, we report on an easy-to-use and reliable protocol that allows enhancing domain wall conductivity (DWC) in single-crystalline LNO (sc-LNO) by 3 to 4 orders of magnitude. sc-LNO thus has become one of the most prospective candidates to engineer DWC applications, notably for domain wall transport both with and without photoexcitation. DWs were investigated here for several days to weeks, both before and after DWC enhancement. 2D local-scale inspections were carried out using adequate local-probe techniques, <i>i</i>.<i>e</i>., piezoresponse force microscopy and conductive atomic force microscopy, while Cerenkov second-harmonic generation was applied for mapping the DW constitution in three-dimensional space across the full LNO single crystal. The comparison between these nano- and microscale inspections allows us to unambiguously correlate the DW inclination angle α close to the sample surface to the measured domain wall current distribution. Moreover, ohmic or diode-like electronic transport characteristics along such DWs can be readily interpreted when analyzing the DW inclination profile

    Heuristic Description of Magnetoelectricity of Cu<sub>2</sub>OSeO<sub>3</sub>

    No full text
    CuO<sub>2</sub>SeO<sub>3</sub> is an insulating material that hosts topologically nontrivial spin whirls, so-called skyrmions, and exhibits magnetoelectric coupling allowing to manipulate these skyrmions by means of electric fields. We report magnetic force microscopy imaging of the real-space spin structure on the surface of a bulk single crystal of CuO<sub>2</sub>SeO<sub>3</sub>. Based on measurements of the electric polarization using Kelvin-probe force microscopy, we develop a heuristic description of the magnetoelectric properties in CuO<sub>2</sub>SeO<sub>3</sub>. The model successfully describes the dependency of the electric polarization on the magnetization in all magnetically modulated phases

    Immobilized Multifunctional Polymersomes on Solid Surfaces: Infrared Light-Induced Selective Photochemical Reactions, pH Responsive Behavior, and Probing Mechanical Properties under Liquid Phase

    No full text
    Fixing polymersomes onto surfaces is in high demand not only for the characterization with advanced microscopy techniques but also for designing specific compartments in microsystem devices in the scope of nanobiotechnology. For this purpose, this study reports the immobilization of multifunctional, responsive, and photo-cross-linked polymersomes on solid substrates by utilizing strong adamantane−β-cyclodextrin host–guest interactions. To reduce nonspecific binding and retain better spherical shape, the level of attractive forces acting on the immobilized polymersomes was tuned through poly­(ethylene glycol) passivation as well as decreased β-cyclodextrin content on the corresponding substrates. One significant feature of this system is the pH responsivity of the polymersomes which has been demonstrated by swelling of the immobilized vesicles at acidic condition through in situ AFM measurements. Also, light responsivity has been provided by introducing nitroveratryloxycarbonyl (NVOC) protected amine molecules as photocleavable groups to the polymersome surface before immobilization. The subsequent low-energy femtosecond pulsed laser irradiation resulted in the cleavage of NVOC groups on immobilized polymersomes which in turn led to free amino groups as an additional functionality. The freed amines were further conjugated with a fluorescent dye having an activated ester that illustrates the concept of bio/chemo recognition for a potential binding of biological compounds. In addition to the responsive nature, the mechanical stability of the analyzed polymersomes was supported by computing Young’s modulus and bending modulus of the membrane through force curves obtained by atomic force microscopy measurements. Overall, polymersomes with a robust and pH-swellable membrane combined with effective light responsive behavior are promising tools to design smart and stable compartments on surfaces for the development of microsystem devices such as chemo/biosensors

    Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas

    No full text
    Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (∼1 cm<sup>2</sup>) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into the functional understanding and technical implementation of a large array of gold nanowires for future medical applications

    Second Harmonic Generation from Metal Nano-Particle Resonators: Numerical Analysis On the Basis of the Hydrodynamic Drude Model

    No full text
    A detailed computational study of the wavelength-dependent efficiency of optical second-harmonic generation in plasmonic nanostructures is presented. The computations are based on a discontinuous Galerkin Maxwell solver that utilizes a hydrodynamic material model to calculate the free-electron dynamics in metals without any further approximations. Besides wave-mixing effects, the material model thus contains the full nonlocal characteristics of the electromagnetic response, as well as intensity-dependent phenomena such as the Kerr effect. To be specific, two prototypical nanostructures are studied in depth with the help of two independent computer codes. For an infinitely long metal cylinder, it is found that the spectral position of linear particle plasmon modes (dipolar modes, higher-order modes, and, for frequencies above the plasma frequency also bulk plasmon modes) and their associated relative strengths for scattering and absorption both at the fundamental and second-harmonic wavelengths largely control the conversion efficiency. Notably, Fabry–Perot resonances associated with longitudinal bulk plasmons may be detectable via background-free second-harmonic spectroscopy. For a more complex V-groove nanostructure, it becomes possible to engineer a doubly resonant scenario at the fundamental and the second-harmonic wavelength. This leads to an efficient enhancement of second-harmonic emission. Our work thus demonstrates that the careful design of nanostructures on the nonlocal linear level facilitates highly efficient nanoantennas for second-harmonic emission with applications in background-free imaging and frequency conversion systems

    Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons

    No full text
    Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab

    Flexible Heteroepitaxy of CoFe<sub>2</sub>O<sub>4</sub>/Muscovite Bimorph with Large Magnetostriction

    No full text
    A bimorph composed of ferrimagnetic cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>, CFO) and flexible muscovite was fabricated via van der Waals epitaxy. The combination of X-ray diffraction and transmission electron microscopy was conducted to reveal the heteroepitaxy of the CFO/muscovite system. The robust magnetic behaviors against mechanical bending were characterized by hysteresis measurements and magnetic force microscopy, which maintain a saturation magnetization (<i>M</i><sub>s</sub>) of ∼120–150 emu/cm<sup>3</sup> under different bending states. The large magnetostrictive response of the CFO film was then determined by digital holographic microscopy, where the difference of magnetostrction coefficient (Δλ) is −104 ppm. The superior performance of this bimorph is attributed to the nature of weak interaction between film and substrate. Such a flexible CFO/muscovite bimorph provides a new platform to develop next-generation flexible magnetic devices

    Terahertz Twistoptics–Engineering Canalized Phonon Polaritons

    No full text
    The terahertz (THz) frequency range is key to studying collective excitations in many crystals and organic molecules. However, due to the large wavelength of THz radiation, the local probing of these excitations in smaller crystalline structures or few-molecule arrangements requires sophisticated methods to confine THz light down to the nanometer length scale, as well as to manipulate such a confined radiation. For this purpose, in recent years, taking advantage of hyperbolic phonon polaritons (HPhPs) in highly anisotropic van der Waals (vdW) materials has emerged as a promising approach, offering a multitude of manipulation options, such as control over the wavefront shape and propagation direction. Here, we demonstrate the THz application of twist-angle-induced HPhP manipulation, designing the propagation of confined THz radiation between 8.39 and 8.98 THz in the vdW material α-molybdenum trioxide (α-MoO3), hence extending twistoptics to this intriguing frequency range. Our images, recorded by near-field optical microscopy, show the frequency- and twist-angle-dependent changes between hyperbolic and elliptic polariton propagation, revealing a polaritonic transition at THz frequencies. As a result, we are able to allocate canalization (highly collimated propagation) of confined THz radiation by carefully adjusting these two parameters, i.e. frequency and twist angle. Specifically, we report polariton canalization in α-MoO3 at 8.67 THz for a twist angle of 50°. Our results demonstrate the precise control and manipulation of confined collective excitations at THz frequencies, particularly offering possibilities for nanophotonic applications

    Heteroepitaxy of Fe<sub>3</sub>O<sub>4</sub>/Muscovite: A New Perspective for Flexible Spintronics

    No full text
    Spintronics has captured a lot of attention since it was proposed. It has been triggering numerous research groups to make their efforts on pursuing spin-related electronic devices. Recently, flexible and wearable devices are in a high demand due to their outstanding potential in practical applications. In order to introduce spintronics into the realm of flexible devices, we demonstrate that it is feasible to grow epitaxial Fe<sub>3</sub>O<sub>4</sub> film, a promising candidate for realizing spintronic devices based on tunneling magnetoresistance, on flexible muscovite. In this study, the heteroepitaxy of Fe<sub>3</sub>O<sub>4</sub>/muscovite is characterized by X-ray diffraction, high-resolution transmission electron microscopy, and Raman spectroscopy. The chemical composition and magnetic feature are investigated by a combination of X-ray photoelectron spectroscopy and X-ray magnetic circular dichroism. The electrical and magnetic properties are examined to show the preservation of the primitive properties of Fe<sub>3</sub>O<sub>4</sub>. Furthermore, various bending tests are performed to show the tunability of functionalities and to confirm that the heterostructures retain the physical properties under repeated cycles. These results illustrate that the Fe<sub>3</sub>O<sub>4</sub>/muscovite heterostructure can be a potential candidate for the applications in flexible spintronics
    corecore