7 research outputs found

    Next Generation Sequencing of Reactive Stroma and Residual Breast Cancer Cells in Tumor Bed after Neoadjuvant Chemotherapy

    Full text link
    Primary systemic or neoadjuvant chemotherapy of breast cancer has become a standard therapy option in locally advanced or predefined intrinsic subtypes such as triple negative or Her2 positive breast cancer. Neoadjuvant chemotherapy can result in complete pathological response without residual tumor cells (tumor bed) or partial response and non-response with different amounts of reactive stroma and residual tumor cells. The interaction between therapy regimens and tumoral driver mutations have been extensively studied, although the reactive stroma of the tumor bed received less attention. In this study, we characterized the mutational status of residual breast cancer cells and reactive tumor stroma devoid of residual tumor cells in partial or non-responders using next generation sequencing. Twenty-one post-therapeutic breast surgical specimens after neoadjuvant chemotherapy underwent pathogenic driver-mutation screening using microdissected residual breast cancer cells and in reactive stroma adjacent to tumor bed areas. In reactive stroma, no mutations could be validated. In residual breast cancer cells, mutations were detected in sixteen of twenty-one cases (76%). In nine of these twenty-one cases (43%), pathogenic driver mutations (PIK3CA, PTEN, TP53, FN1, PLAG1) were identified. Pathogenic driver-mutations are exclusively restricted to residual carcinoma cells and are absent in reactive stroma independently from intrinsic breast cancer subtypes or tumor stage. These data suggest that the absence of pathogenic mutations in a tumor bed without residual tumor cells may have prognostic implications after neoadjuvant chemotherapy

    miR-30c-2-3p and miR-30a-3p: New pieces of the Jigsaw puzzle in HIF2α regulation

    Full text link
    Summary: Clear cell renal cell carcinoma (ccRCC), the most frequent subtype of renal cell cancer, is characterized by mutation of the von Hippel-Lindau (VHL) tumor suppressor gene, which results in stabilization of hypoxia-inducible factor (HIF) α proteins. In this issue of Cancer Discovery, Mathew and colleagues report that miR-30c-2-3p and miR-30a-3p downregulation in ccRCC promotes increased expression of HIF2α.Cancer Discov; 4(1); 22-4. ©2014 AACR

    Next Generation Sequencing of Reactive Stroma and Residual Breast Cancer Cells in Tumor Bed after Neoadjuvant Chemotherapy

    No full text
    Primary systemic or neoadjuvant chemotherapy of breast cancer has become a standard therapy option in locally advanced or predefined intrinsic subtypes such as triple negative or Her2 positive breast cancer. Neoadjuvant chemotherapy can result in complete pathological response without residual tumor cells (tumor bed) or partial response and non-response with different amounts of reactive stroma and residual tumor cells. The interaction between therapy regimens and tumoral driver mutations have been extensively studied, although the reactive stroma of the tumor bed received less attention. In this study, we characterized the mutational status of residual breast cancer cells and reactive tumor stroma devoid of residual tumor cells in partial or non-responders using next generation sequencing. Twenty-one post-therapeutic breast surgical specimens after neoadjuvant chemotherapy underwent pathogenic driver-mutation screening using microdissected residual breast cancer cells and in reactive stroma adjacent to tumor bed areas. In reactive stroma, no mutations could be validated. In residual breast cancer cells, mutations were detected in sixteen of twenty-one cases (76%). In nine of these twenty-one cases (43%), pathogenic driver mutations (PIK3CA, PTEN, TP53, FN1, PLAG1) were identified. Pathogenic driver-mutations are exclusively restricted to residual carcinoma cells and are absent in reactive stroma independently from intrinsic breast cancer subtypes or tumor stage. These data suggest that the absence of pathogenic mutations in a tumor bed without residual tumor cells may have prognostic implications after neoadjuvant chemotherapy

    Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the in vitro genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes

    No full text
    Serum proteins have been shown to modulate the cytotoxic and genotoxic responses to nanomaterials. The aim was to investigate the influence of serum on the induction of micronuclei (MN) by nanoparticles (NPs) of different sizes. Therefore, A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles (SNPs) were used as models. Assessment of the cell viability, cell cycle changes and induction of MN by SNPs ranging from 12 to 174 nm was performed in presence or absence of serum, applying the in vitro flow cytometry-based MN assay. Here, it has been demonstrated that serum has an influence on these end points, with a lower cell viability in absence of serum compared with the presence of serum. Further, cell cycle changes, specifically, G1 and S-phase arrest, were observed in absence of serum for four out of six SNPs tested. A size-dependent MN induction was observed: larger SNPs being more active in absence of serum. In addition, the serum influence was characterised by a size-dependency for cytotoxic and genotoxic effects, with a higher influence of serum for smaller particles. The data indicate that the in vitro micronucleus assay in presence and absence of serum could be advised for hazard assessment because it demonstrates a higher sensitivity in serum-free conditions than in conditions with serum. However, this recommendation applies only if the cell line used is able to proliferate under serum-free conditions because cell division is a prerequisite for MN expression.peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=inan20status: publishe

    Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the in vitro genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes

    No full text
    Serum proteins have been shown to modulate the cytotoxic and genotoxic responses to nanomaterials. The aim was to investigate the influence of serum on the induction of micronuclei (MN) by nanoparticles (NPs) of different sizes. Therefore, A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles (SNPs) were used as models. Assessment of the cell viability, cell cycle changes and induction of MN by SNPs ranging from 12 to 174 nm was performed in presence or absence of serum, applying the in vitro flow cytometry-based MN assay. Here, it has been demonstrated that serum has an influence on these end points, with a lower cell viability in absence of serum compared with the presence of serum. Further, cell cycle changes, specifically, G1 and S-phase arrest, were observed in absence of serum for four out of six SNPs tested. A size-dependent MN induction was observed: larger SNPs being more active in absence of serum. In addition, the serum influence was characterised by a size-dependency for cytotoxic and genotoxic effects, with a higher influence of serum for smaller particles. The data indicate that the in vitro micronucleus assay in presence and absence of serum could be advised for hazard assessment because it demonstrates a higher sensitivity in serum-free conditions than in conditions with serum. However, this recommendation applies only if the cell line used is able to proliferate under serum-free conditions because cell division is a prerequisite for MN expression

    MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients

    Full text link
    A number of treatments targeting VEGF or mTOR pathways have been approved for metastatic clear cell Renal Cell Carcinoma (ccRCC), but the majority of patients show disease progression after first line therapy with a very low rate of complete or long-term responders. It has been shown that miRs may play a role in prediction of treatment response in various cancer types. The aim of our study was to identify a miR signature predictive for RCC patients' response to antiangiogenic tyrosine kinase inhibitor (TKI) treatment in the first line therapy. Sequencing of 40 paired normal/tumor formalin fixed and paraffin embedded ccRCC tissues revealed separate clustering via unsupervised dendrograms. With supervised analysis, the strongest differential expression was obtained with miR-99b-5p, which was significantly lower in patients with short progression free survival (<8 months) and TKI non-responders (progressive disease patients according to RECIST) (p<0.0001, each). Validation using RTqPCR and a second patient cohort compiled from three different hospitals (n=65) showed higher expression of miR-99b-5p in complete responders, but this trend did not reach statistical significance. It is concluded that low miR-99b-5p expression analyzed with sequencing methodology may correlate with tumor progression in TKI-treated ccRCC patients
    corecore