8 research outputs found

    Dose rationale for gabapentin and tramadol in pediatric patients with chronic pain

    Get PDF
    Despite off-label use, the efficacy and safety of gabapentin and tramadol in pediatric patients (3 months to <18 years old) diagnosed with chronic pain has not been characterized. However, generating evidence based on randomized clinical trials in this population has been extremely challenging. The current investigation illustrates the use of clinical trial simulations (CTSs) as a tool for optimizing doses and protocol design for a prospective investigation in pediatric patients with chronic pain. Pharmacokinetic (PK) modeling and CTSs were used to describe the PKs of gabapentin and tramadol in the target population. In the absence of biomarkers of analgesia, systemic exposure (AUC, Css) was used to guide dose selection under the assumption of a comparable exposure-response (PKPD) relationship for either compound between adults and children. Two weight bands were identified for gabapentin, with doses titrated from 5 to 63 mg/kg. This yields gabapentin exposures (AUC0-8 ) of approximately 35 mg/L*h (1200 mg/day adult dose equivalent). For tramadol, median steady state concentrations between 200 and 300 ng/mL were achieved after doses of 2-5 mg/kg, but concentrations showed high interindividual variability. Simulation scenarios showed that titration steps are required to explore therapeutically relevant dose ranges taking into account the safety profile of both drugs. Gabapentin can be used t.i.d. at doses between 7-63 and 5-45 mg/kg for patients receiving gabapentin weighing <15 and ≥15 kg, respectively, whereas a t.i.d. regimen with doses between 1 and 5 mg/kg can be used for tramadol in patients who are not fast metabolisers

    Blood Parasite Load as an Early Marker to Predict Treatment Response in Visceral Leishmaniasis in Eastern Africa

    Get PDF
    Background: To expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. Methods: Data from 3 clinical trials were combined in this study, in which Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative polymerase chain reaction (qPCR) before, during, and up to 6 months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at 6 months. Results: The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within 6 months of follow-up at a cutoff of 20 parasites/mL (area under the curve 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ = 0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a > 80% power to detect a difference in cure rate between treatment regimens if this difference was high (> 50%) and when minimally 30 patients were included per regimen. Conclusions: Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities.This work was supported by the European Union Seventh Framework Programme Africoleish (grant number 305178); the World Health Organization—Special Programme for Research and Training in Tropical Diseases (WHO-TDR); the French Development Agency, France (grant number CZZ2062); UK aid, UK; the Federal Ministry of Education and Research through KfW, Germany; the Medicor Foundation, Liechtenstein; Médecins Sans Frontières, International; the Swiss Agency for Development and Cooperation (SDC), Switzerland (grant number 81017718); the Dutch Ministry of Foreign Affairs (DGIS), the Netherlands (grant number PDP15CH21); the French Ministry for Europe and Foreign Affairs (MEAE), France; The Rockefeller Foundation, USA; BBVA Foundation, Spain; the European Union—AfriKADIA project of the Second European and Developing Countries Clinical Trials Partnership Programme (EDCTP2) (grant number RIA2016S1635); and ZonMw/Dutch Research Council (NWO) Veni grant (project number 91617140 to T. P. C. D.).S

    Optimizing visceral leishmaniasis treatment in Eastern Africa: Understanding the pharmacokinetics and pharmacodynamics in a pediatric and malnourished population

    No full text
    Visceral leishmaniasis (VL) is a neglected tropical disease caused by the Leishmania parasite. There is a critical need for development of more effective and user-friendly treatment and diagnostics for this devastating and potentially fatal disease, especially in Eastern Africa, where treatment efficacy is suboptimal in this vulnerable and mainly pediatric population. To minimize the risks for either treatment failure or toxicity, VL drugs should be dosed precisely to reach the right drug exposure in the patient. To achieve this, pharmacokinetic studies are needed to describe the absorption, distribution, metabolism and elimination of VL drugs. In the first part of this thesis, the pharmacokinetics of paromomycin and miltefosine were studied, two favorable treatment options for VL. An optimized paromomycin-miltefosine combination regimen in Eastern African VL patients was developed, resulting in satisfactory cure rates and desired drug exposure levels in both pediatric and adult patients. Moreover, the impact of malnutrition and severity of disease on drug pharmacokinetics and exposure were studied and substantial and potentially clinically relevant effects of these factors were discovered. Secondly, the Leishmania parasite dynamics has been characterized in VL patients and the relationship between blood parasite load and relapse of disease, which is a long-term event that is difficult to predict. This thesis demonstrated that blood parasite load is a promising biomarker to predict relapse of disease already early after treatment. The knowledge gained in this thesis is a step forward to optimization, individualization and monitoring of VL treatment in Eastern Africa

    Lack of Clinical Pharmacokinetic Studies to Optimize the Treatment of Neglected Tropical Diseases : A Systematic Review

    No full text
    Introduction: Neglected tropical diseases (NTDs) affect more than one billion people, mainly living in developing countries. For most of these NTDs, treatment is suboptimal. To optimize treatment regimens, clinical pharmacokinetic studies are required where they have not been previously conducted to enable the use of pharmacometric modeling and simulation techniques in their application, which can provide substantial advantages. Objectives: Our aim was to provide a systematic overview and summary of all clinical pharmacokinetic studies in NTDs and to assess the use of pharmacometrics in these studies, as well as to identify which of the NTDs or which treatments have not been sufficiently studied. Methods: PubMed was systematically searched for all clinical trials and case reports until the end of 2015 that described the pharmacokinetics of a drug in the context of treating any of the NTDs in patients or healthy volunteers. Results: Eighty-two pharmacokinetic studies were identified. Most studies included small patient numbers (only five studies included >50 subjects) and only nine (11 %) studies included pediatric patients. A large part of the studies was not very recent; 56 % of studies were published before 2000. Most studies applied non-compartmental analysis methods for pharmacokinetic analysis (62 %). Twelve studies used population-based compartmental analysis (15 %) and eight (10 %) additionally performed simulations or extrapolation. For ten out of the 17 NTDs, none or only very few pharmacokinetic studies could be identified. Conclusions: For most NTDs, adequate pharmacokinetic studies are lacking and population-based modeling and simulation techniques have not generally been applied. Pharmacokinetic clinical trials that enable population pharmacokinetic modeling are needed to make better use of the available data. Simulation-based studies should be employed to enable the design of improved dosing regimens and more optimally use the limited resources to effectively provide therapy in this neglected area

    Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation : a multicentre, retrospective, pharmacodynamic cohort analysis

    No full text
    BACKGROUND: Anti-thymocyte globulin (ATG) is used to prevent graft-versus-host disease (GvHD) after allogeneic haemopoietic cell transplantation (HCT). However, ATG can also cause delayed immune reconstitution of T cells, negatively affecting survival. We studied the relation between exposure to ATG and clinical outcomes in adult patients with acute leukaemia and myelodysplastic syndrome. METHODS: We did a retrospective, pharmacokinetic-pharmacodynamic analysis of data from patients with acute lymphoid leukaemia, acute myeloid leukaemia, or myelodysplastic syndrome receiving their first T-cell repleted allogeneic peripheral blood stem cell HCT with ATG (thymoglobulin) as part of non-myeloablative conditioning from March 1, 2004, to June 1, 2015. Patients received a cumulative intravenous dose of 8 mg/kg divided over 4 days, starting on day -8 before HCT. Active ATG concentrations were measured using a validated bioassay and pharmacokinetic exposure measures (maximum concentration, concentration at time of infusion of the graft, time to reach a concentration of 1 arbitary unit [AU] per day/mL, area under the curve [AUC], and the AUC before and after HCT) were calculated with a validated population pharmacokinetic model. The main outcome of interest was 5-year overall survival, defined as days to death from any cause or last follow-up. Other outcomes were relapse-related mortality, non-relapse mortality, event-free survival, acute and chronic GvHD, and assessment of current and optimum dosing. We used Cox proportional hazard models and Fine-Gray competing risk models for the analyses. FINDINGS: 146 patients were included. ATG exposure after HCT was shown to be the best predictor for 5-year overall survival. Optimum exposure after transplantation was determined to be 60-95 AU per day/mL. Estimated 5-year overall survival in the group who had optimum exposure (69%, 95% CI 55-86) was significantly higher than in the group who had below optimum exposure (32%, 20-51, p=0·00037; hazard ratio [HR] 2·41, 95% CI 1·15-5·06, p=0·020) and above optimum exposure (48%, 37-62, p=0·030; HR 2·11, 95% CI 1·04-4·27, p=0·038). Patients in the optimum exposure group had a greater chance of event-free survival than those in the below optimum exposure group (HR 2·54, 95% CI 1·29-5·00, p=0·007; HR for the above optimum group: 1·83, 0·97-3·47, p=0·063). Above-optimum exposure led to higher relapse-related mortality compared with optimum exposure (HR 2·66, 95% CI 1·12-6·31; p=0·027). Below optimum exposure increased non-relapse mortality compared with optimum exposure (HR 4·36, 95% CI 1·60-11·88; p=0·0040), grade 3-4 acute GvHD (3·09, 1·12-8·53; p=0·029), but not chronic GvHD (2·38, 0·93-6·08; p=0·070). Modelled dosing based on absolute lymphocyte counts led to higher optimum target attainment than did weight-based dosing. INTERPRETATION: Exposure to ATG affects survival after HCT in adults, stressing the importance of optimum ATG dosing. Individualised dosing of ATG, based on lymphocyte counts rather than bodyweight, might improve survival chances after HCT. FUNDING: Netherlands Organization for Health Research and Development and Queen Wilhelma Fund for Cancer Research

    Blood Parasite Load as an Early Marker to Predict Treatment Response in Visceral Leishmaniasis in Eastern Africa

    No full text
    Background: To expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. Methods: Data from 3 clinical trials were combined in this study, in which Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative polymerase chain reaction (qPCR) before, during, and up to 6 months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at 6 months. Results: The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within 6 months of follow-up at a cutoff of 20 parasites/mL (area under the curve 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ=0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a > 80% power to detect a difference in cure rate between treatment regimens if this difference was high (> 50%) and when minimally 30 patients were included per regimen. Conclusions: Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities

    Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: a multicentre, retrospective, pharmacodynamic cohort analysis

    No full text
    BACKGROUND: Anti-thymocyte globulin (ATG) is used to prevent graft-versus-host disease (GvHD) after allogeneic haemopoietic cell transplantation (HCT). However, ATG can also cause delayed immune reconstitution of T cells, negatively affecting survival. We studied the relation between exposure to ATG and clinical outcomes in adult patients with acute leukaemia and myelodysplastic syndrome. METHODS: We did a retrospective, pharmacokinetic-pharmacodynamic analysis of data from patients with acute lymphoid leukaemia, acute myeloid leukaemia, or myelodysplastic syndrome receiving their first T-cell repleted allogeneic peripheral blood stem cell HCT with ATG (thymoglobulin) as part of non-myeloablative conditioning from March 1, 2004, to June 1, 2015. Patients received a cumulative intravenous dose of 8 mg/kg divided over 4 days, starting on day -8 before HCT. Active ATG concentrations were measured using a validated bioassay and pharmacokinetic exposure measures (maximum concentration, concentration at time of infusion of the graft, time to reach a concentration of 1 arbitary unit [AU] per day/mL, area under the curve [AUC], and the AUC before and after HCT) were calculated with a validated population pharmacokinetic model. The main outcome of interest was 5-year overall survival, defined as days to death from any cause or last follow-up. Other outcomes were relapse-related mortality, non-relapse mortality, event-free survival, acute and chronic GvHD, and assessment of current and optimum dosing. We used Cox proportional hazard models and Fine-Gray competing risk models for the analyses. FINDINGS: 146 patients were included. ATG exposure after HCT was shown to be the best predictor for 5-year overall survival. Optimum exposure after transplantation was determined to be 60-95 AU per day/mL. Estimated 5-year overall survival in the group who had optimum exposure (69%, 95% CI 55-86) was significantly higher than in the group who had below optimum exposure (32%, 20-51, p=0·00037; hazard ratio [HR] 2·41, 95% CI 1·15-5·06, p=0·020) and above optimum exposure (48%, 37-62, p=0·030; HR 2·11, 95% CI 1·04-4·27, p=0·038). Patients in the optimum exposure group had a greater chance of event-free survival than those in the below optimum exposure group (HR 2·54, 95% CI 1·29-5·00, p=0·007; HR for the above optimum group: 1·83, 0·97-3·47, p=0·063). Above-optimum exposure led to higher relapse-related mortality compared with optimum exposure (HR 2·66, 95% CI 1·12-6·31; p=0·027). Below optimum exposure increased non-relapse mortality compared with optimum exposure (HR 4·36, 95% CI 1·60-11·88; p=0·0040), grade 3-4 acute GvHD (3·09, 1·12-8·53; p=0·029), but not chronic GvHD (2·38, 0·93-6·08; p=0·070). Modelled dosing based on absolute lymphocyte counts led to higher optimum target attainment than did weight-based dosing. INTERPRETATION: Exposure to ATG affects survival after HCT in adults, stressing the importance of optimum ATG dosing. Individualised dosing of ATG, based on lymphocyte counts rather than bodyweight, might improve survival chances after HCT. FUNDING: Netherlands Organization for Health Research and Development and Queen Wilhelma Fund for Cancer Research

    Lack of Clinical Pharmacokinetic Studies to Optimize the Treatment of Neglected Tropical Diseases: A Systematic Review

    No full text
    Introduction: Neglected tropical diseases (NTDs) affect more than one billion people, mainly living in developing countries. For most of these NTDs, treatment is suboptimal. To optimize treatment regimens, clinical pharmacokinetic studies are required where they have not been previously conducted to enable the use of pharmacometric modeling and simulation techniques in their application, which can provide substantial advantages. Objectives: Our aim was to provide a systematic overview and summary of all clinical pharmacokinetic studies in NTDs and to assess the use of pharmacometrics in these studies, as well as to identify which of the NTDs or which treatments have not been sufficiently studied. Methods: PubMed was systematically searched for all clinical trials and case reports until the end of 2015 that described the pharmacokinetics of a drug in the context of treating any of the NTDs in patients or healthy volunteers. Results: Eighty-two pharmacokinetic studies were identified. Most studies included small patient numbers (only five studies included >50 subjects) and only nine (11 %) studies included pediatric patients. A large part of the studies was not very recent; 56 % of studies were published before 2000. Most studies applied non-compartmental analysis methods for pharmacokinetic analysis (62 %). Twelve studies used population-based compartmental analysis (15 %) and eight (10 %) additionally performed simulations or extrapolation. For ten out of the 17 NTDs, none or only very few pharmacokinetic studies could be identified. Conclusions: For most NTDs, adequate pharmacokinetic studies are lacking and population-based modeling and simulation techniques have not generally been applied. Pharmacokinetic clinical trials that enable population pharmacokinetic modeling are needed to make better use of the available data. Simulation-based studies should be employed to enable the design of improved dosing regimens and more optimally use the limited resources to effectively provide therapy in this neglected area
    corecore