3 research outputs found

    Insights into the charge storage mechanism of binder-free electrochemical capacitors in ionic liquid electrolytes

    Get PDF
    Electrochemical capacitors (synonymously supercapacitors) working under an electrochemical double-layer charge storage mechanism (EDLC) are widely investigated because of their excellent power density and cycle life; however, their energy density is lower than those of lithium-ion batteries. Ionic liquids (ILs) are of great interest as electrolytes for EDLCs due to their wide operational voltage window. Here, we provide a systematic investigation on the influence of anions of ILs on the charge storage mechanism and electrochemical stability of EDLC electrodes. Two IL electrolytes, viz., [1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI)], having similar cations but different anions and carbon nanotube (CNT) electrodes are chosen for this study. The CNT//BF4:TFSI//CNT-based device showed superior electrochemical performance (∼69 F•g-1 gravimetric specific capacitance, ∼949 W•kg-1 power density, and ∼139 Wh•kg-1 energy density at 0.5 A•g-1) to CNT//EMIMBF4//CNT and CNT//EMIMTFSI//CNT devices. The device using a mixture of BF4:TFSI (1:0.5) electrolytes has an operating voltage of 0-3.8 V and specific capacitance retention of ∼45% at 0.5 A•g-1 after 500 cycles. In the case of the IL mixture (BF4:TFSI), the combined anion structure and their properties play very crucial part in the improvement of the electrochemical performance of the CNT//BF4:TFSI//CNT device. The assembled Teflon Swagelok-type cell could light up green (3.3 V) and red (2.1 V) light-emitting diodes for more than 5 min

    Nano/Microrobots Line Up for Gastrointestinal Tract Diseases: Targeted Delivery, Therapy, and Prevention

    No full text
    Nano/microrobots (NMRs) are tiny devices that can convert energy into motion and operate at nano/microscales.54 Especially in biomedical research, NMRs have received much attention over the past twenty years because of their excellent capabilities and great potential in various applications, including on-demand drug delivery, gene and cell transport, and precise microsurgery. Reports published in recent years show that synthetic nano/microrobots have promising potential to function in the gastrointestinal (GI) region, particularly in terms of drug delivery. These tiny robots were able to be designed in such a way that they propel in their surroundings (biological media) with high speed, load cargo (drug) efficiently, transport it safely, and release upon request successfully. Their propulsion, retention, distribution, and toxicity in the GI tract of mice has been evaluated. The results envisage that such nano/microrobots can be further modified and developed as a new-generation treatment of GI tract diseases. In this minireview, we focus on the functionality of micro/nanorobots as a biomedical treatment system for stomach/intestinal diseases. We review the research progress from the first in vivo report in December 2014 to the latest in August 2021. Then, we discuss the treatment difficulties and challenges in vivo application (in general) and possible future development routes
    corecore