21 research outputs found

    Uncovering the Evolution of Lead In-Use Stocks in Lead-Acid Batteries and the Impact on Future Lead Metabolism in China

    No full text
    This study aims to illustrate the evolution of lead in-use stocks, particularly in lead-acid batteries (LABs), and their impact on future lead metabolism in China. First, we used a bottom-up methodology to study the evolution of lead in-use stocks in China from 2000 to 2014. It was found that the lead in-use stocks increased from 0.91 to 7.75 Mt. The principal driving force of such change is the rapid development of LABs-driven electric vehicles. Then, we proposed three scenarios, low, baseline, and high in-use stocks, to project the lead demand and supply toward 2030. The results show that the LAB demand will decrease as a result of competition and replacement by lithium ion batteries. The lead demand in China will come to a peak around 2018āˆ’2020 under the three scenarios, then reduce to 3.7, 4.6, and 5.3 Mt/yr in 2030. Meanwhile, primary lead outputs will follow the increase of zinc production in China. Secondary lead recovered from spent LABs will also increase gradually. The overall unused lead stocks in 2030 will be 49.6, 44.8, and 41.2 Mt under the three scenarios, some 3.5ā€“5.7 times as big as the lead in-use stocks. Thus, a large amount of lead will have to be safely stockpiled or exported in China

    Study of Reciprocal Effects between Mandatory Pollutant Emissions Reduction Policy and Structural Change within the Manufacturing Sector in a Chinese Coastal Area

    No full text
    We develop a multicriteria decision-making model coupled with scenario analysis to quantitatively elucidate the reciprocal effect between a mandatory pollutant emissions reduction policy and industrial structure change within the manufacturing sector on the basis of an in-depth study of a well-developed coastal area in East China, Ningbo City, toward 2020. First, 18 two-digit level industries (TDLIs) in the manufacturing sector are screened out due to intensive emissions of the four pollutants (COD, NH<sub>3</sub>ā€“N, SO<sub>2</sub>, and NO<sub><i>x</i></sub>). Second, a model is established to identify the optimal solution for the industrial structure adjustment of the 18 TDLIs under two scenarios, the ā€œbusiness-as-usualā€ scenario and the ā€œindustrial structure adjustmentā€ scenario. Both scenarios are expanded into three subscenarios. Quantitative constraint conditions and two criteria are formulated to screen out the optimal solutions. We propose a coefficient of industrial structure adjustment, <i>K</i><sub><i>i</i></sub>, which could clearly reflect the policy preference in terms of industrial development and reallocate the quota of the four-pollutant emission among the 18 TDLIs with regards to the different expectations of economy development in 2020. The model will help local authorities make tailored policies to reduce pollution emissions effectively through industrial structure change by delicately allocating the pollutant emission quota and setting reasonable targets of emission intensity reduction among TDLIs

    Greenhouse Gas Mitigation in Chinese Eco-Industrial Parks by Targeting Energy Infrastructure: A Vintage Stock Model

    No full text
    Mitigating greenhouse gas (GHG) emissions in Chinaā€™s industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%ā€“46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures

    Study on Industrial Metabolism of Carbon in a Chinese Fine Chemical Industrial Park

    No full text
    Carbon metabolism of a chemical industrial park remains scarce in literature, due to overwhelming data collection workload and intricate interfirm flow examination. Based on five-year intensive data collection and verification, this research presents the findings of one-year static carbon metabolism in a typical Chinese fine chemical industrial park. As to the total direct carbon input (0.38 million tons), 32% concern chemicals production, while the remaining 68% are related to energy conversion. Three common metrics, carbon efficiency, C factor, and E factor are applied to assess the performance of carbon flows. Based on an analysis of 380 raw chemicals and 130 chemical products, performance of the three kinds of chemicals, pharmaceuticals, dyes, and other fine chemicals, and the chemical industrial park as a whole are considered and compared with similar industrial area, respectively. The carbon efficiency of chemicals production is 69%, while the other 31% ends up in waste. The interfirm carbon flow accounts for 3.4% of the carbon inputs in raw chemicals. Pursuing local environmental goals (i.e., abatement of odor, chemical oxygen demand, and solid waste) results in greater CO<sub>2</sub> emissions, which runs against protection of the global environment. Options to improve carbon efficiency were also discussed from three aspects. This study lays groundwork for quantifying greenhouse gas emissions, benchmarking carbon efficiency, and conducting life cycle assessment on the park level

    The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China

    No full text
    This study uncovered the direct and indirect energy-related greenhouse gas (GHG) emissions of 213 Chinese national-level industrial parks, providing 11% of Chinaā€™s gross domestic product, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO<sub>2</sub> equiv, respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 111 million tonne, equivalent to 9.1% of the parksā€™ total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low carbon development of Chinese industrial parks

    DataSheet1_Synergistic effect of CD47 blockade in combination with cordycepin treatment against cancer.docx

    No full text
    Cordycepin is widely considered a direct tumor-suppressive agent. However, few studies have investigated as the effect of cordycepin therapy on the tumor microenvironment (TME). In our present study, we demonstrated that cordycepin could weaken the function of M1-like macrophages in the TME and also contribute to macrophage polarization toward the M2 phenotype. Herein, we established a combined therapeutic strategy combining cordycepin and an anti-CD47 antibody. By using single-cell RNA sequencing (scRNA-seq), we showed that the combination treatment could significantly enhance the effect of cordycepin, which would reactivate macrophages and reverse macrophage polarization. In addition, the combination treatment could regulate the proportion of CD8+ T cells to prolong the progression-free survival (PFS) of patients with digestive tract malignancies. Finally, flow cytometry validated the changes in the proportions of tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs). Collectively, our findings suggested that the combination treatment of cordycepin and the anti-CD47 antibody could significantly enhance tumor suppression, increase the proportion of M1 macrophages, and decrease the proportion of M2 macrophages. In addition, the PFS in patients with digestive tract malignancies would be prolonged by regulating CD8+ T cells.</p

    Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs

    No full text
    Cell-associated ARGs in wastewater treatment plants (WWTPs) has been concerned, however, cell-free ARGs in WWTPs was rarely studied. In this study, the abundances of four representative ARGs, <i>sulII</i>, <i>tetC</i>, <i>bla</i><sub><i>PSEā€‘1</i></sub>, and <i>ermB</i>, in a large municipal WWTP were investigated in both cell-associated and cell-free fractions. Cell-associated ARGs was the dominant ARGs fraction in the raw wastewater. After biological treatment, sludge settling, membrane filtration, and disinfection, cell-associated ARGs were substantially reduced, though the ratios of ARG/16S rRNA gene were increased with disinfection. Cell-free ARGs persisted in the WWTP with a removal of 0.36 log to 2.68 logs, which was much lower than the removal of cell-associated ARGs (3.21 logs to 4.14 logs). Therefore, the abundance ratio of cell-free ARGs to cell-associated ARGs increased from 0.04ā€“1.59% to 2.00ā€“1895.08% along the treatment processes. After 25-day-storage, cell-free ARGs in both biological effluent and disinfection effluent increased by 0.14 log to 1.99 logs and 0.12 log to 1.77 logs respectively, reflecting the persistence and low decay rate of cell-free ARGs in the discharge water. Therefore, cell-free ARGs might be a kind of important but previously neglected pollutant from WWTPs, which added potential risks to the effluent receiving environments

    Higher levels of IL-33 mRNA were correlated with prolonged overall survival of adenocarcinoma NSCLC.

    No full text
    <p>Survival analysis of Adenocarcinoma (A) and squamous cell carcinoma (B) with high or low IL-33 expression in NSCLC patients. Data are collected from TCGA. Log-rank test was performed.</p
    corecore