16 research outputs found

    A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy

    Get PDF
    Technical improvements in planning and dose delivery and in verification of patient positioning have substantially widened the therapeutic window for radiation treatment of cancer. However, changes in patient anatomy during the treatment limit the exploitation of these new techniques. To further improve radiation treatments, anatomical changes need to be modeled and accounted for. Non-rigid registration can be used for this purpose. This paper describes the design, the implementation and the validation of a new framework for non-rigid registration for radiotherapy applications. The core of this framework is an improved version of the Thin Plate Splines Robust Point Matching (TPS-RPM) algorithm. The TPS-RPM algorithm estimates a global correspondence and a transformation between the points that represent organs of interest belonging to two image sets. However, the algorithm does not allow for the inclusion of prior knowledge on the correspondence of subset of points and therefore, it can lead to inconsistent anatomical solutions. In this paper TPS-RPM was improved by employing a novel correspondence filter that supports simultaneous registration of multiple structures. The improved method allows for coherent organ registration and for the inclusion of user defined landmarks, lines and surfaces inside and outside of structures of interest. A procedure to generate control points form segmented organs is described. The framework parameters r and ?, which control the number of points and the non-rigidness of the transformation respectively, were optimized for three sites with different degrees of deformation: head and neck, prostate and cervix, using two cases per site. For the head and neck cases, the salivary glands were manually contoured on CT-scans, for the prostate cases the prostate and the vesicles, and for the cervix cases the cervix-uterus, the bladder and the rectum. The transformation error obtained using the best set of parameters was below 1 mm for all the studied cases. The length of the deformation vectors were on average (± 1 standard deviation) 5.8 ± 2.5 and 2.6 ± 1.1 mm for the head and neck cases, 7.2 ± 4.5 and 8.6 ± 1.9 mm for the prostate cases, and 19.0 ± 11.6 and 14.5 ± 9.3 mm for the cervix cases. Distinguishable anatomical features were identified for each case, and were used to validate the registration by calculating residual distances after transformation: 1.5 ± 0.8, 2.3 ± 1.0 and 6.3 ± 2.9 mm for the head and neck, prostate and cervix sites respectively. Finally, we demonstrated how the inclusion of these anatomical features in the registration process reduced the residual distances to 0.8 ± 0.5, 0.6 ± 0.5 and 1.3 ± 0.7 mm for the head and neck, prostate and cervix sites respectively. The inclusion of additional anatomical features produced more anatomically coherent transformations without compromising the transformation error. We concluded that the presented non-rigid registration framework is a powerful tool to simultaneously register multiple segmented organs with very different complexity

    Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    No full text
    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer

    Theoretical modelling of flame-acoustic interaction

    No full text
    The interaction between premixed flames and acoustic perturbations of the gas velocity leads to combustion noise. In order to design noise-free combustion devices, one needs to understand the detailed mechanism by which the combustion noise is produced. The conical Bunsen flame is an excellent model for theoretical studies of the combustion noise

    A symmetric nonrigid registration method to handle large organ deformations in cervical cancer patients

    No full text
    Purpose: Modern radiotherapy requires assessment of patient anatomical changes. By using unidirectional registration methods, the quantified anatomical changes are asymmetric, i.e., depend on the direction of the registration. Moreover, the registration is challenged by the large and complex organ deformations that can occur in, e. g., cervical cancer patients. The aim of this work was to develop, test, and validate a symmetric feature-based nonrigid registration method that can handle organs with large-scale deformations. Methods: A symmetric version of the unidirectional thin plate spline robust point matching (TPS-RPM) algorithm was developed, implemented, tested, and validated. Tests were performed by using the delineated cervix and uterus and bladder in CT scans of five cervical cancer patients. For each patient, five CT scans with a large variability in organ shape, volume, and deformations were acquired. Both the symmetric and the unidirectional algorithm were employed to calculate the registration geometric accuracy (surface distance and surface coverage errors), the inverse consistency, the residual distances after transforming anatomical landmarks, and the registration time. Additionally, to facilitate the further use of our symmetric method, a large set of input parameters was tested. Results: The developed symmetric algorithm handled successfully the registration of bladders with extreme volume change for which TPS-RPM failed. Compared to the unidirectional algorithm the symmetric algorithm improved, for the registration of organs with large volume change, the inverse consistency by 78% and the surface coverage by 46%. Similarly, for organs with small volume change, the symmetric algorithm improved the inverse consistency by 69% and the surface coverage by 13%. The method allowed for anatomically coherent registration in only 35 s for cervixuterus and 151 s for bladder, while keeping the inverse consistency errors around 1 mm and the surface matching errors below 1 mm. Compared to rigid alignment the symmetric method reduced the residual distances between anatomical landmarks from a range of 5.8 +/- 2-70.1 +/- 20.1 mm to a range of 1.9 +/- 0.2-8.5 +/- 5.2 mm. Conclusions: The developed symmetric method could be employed to perform fast, accurate, consistent, and anatomically coherent registration of organs with large and complex deformations. Therefore, the method is a useful tool that could support further developments in high precision image guided radiotherapy. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3443436

    Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    No full text
    \u3cp\u3ePurpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.\u3c/p\u3
    corecore