447 research outputs found
Trapped electrons in the quantum degenerate regime
A full strength Coulomb interaction between trapped electrons can be felt only in absence of a neutralizing background. In order to study quantum degenerate electrons without such a background, an external trap is needed to compensate for the strong electronic repulsion. As a basic model for such a system, we study a trapped electron pair in a harmonic trap with an explicit inclusion of its Coulomb interaction. We find the eigenenergy of the ground state, confirming earlier work in the context of harmonium. We extend this to a complete set of properly scaled energies for any value of the trapping strength, including the excited states. The problem is solved either numerically or by making harmonic approximations to the potential. As function of the trapping strength a crossover can be made from the strongly to the weakly-coupled regime, and we show that in both regimes perturbative methods based on a pair-wise electron description would be effective for a many-particle trapped electron system, which resembles a Wigner crystal in the ground state of the strongly coupled limit
Saturation Spectroscopy of Iodine in Hollow-core Optical Fibre
We present high-resolution spectroscopy of Iodine vapour that is loaded and
trapped within the core of a hollow-core photonic crystal fibre (HC-PCF). We
compare the observed spectroscopic features to those seen in a conventional
iodine cell and show that the saturation characteristics differ significantly.
Despite the confined geometry it was still possible to obtain sub-Doppler
features with a spectral width of ~6 MHz with very high contrast. We provide a
simple theory which closely reproduces all the key observations of the
experiment.Comment: 12 pages, 7 figure
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
We theoretically investigate the process of coupling cold atoms into the core
of a hollow-core photonic-crystal optical fiber using a blue-detuned
Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam
to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the
darkest regions of the beam thereby minimizing shifts in the internal states
and making the guide highly robust to heating effects. This single optical beam
is used as both a funnel and guide to maximize the number of atoms into the
fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical
trap (MOT) above a vertically-oriented optical fiber. We observe a
gravito-optical trapping effect for atoms with high orbital momentum around the
trap axis, which prevents atoms from coupling to the fiber: these atoms lack
the kinetic energy to escape the potential and are thus trapped in the laser
funnel indefinitely. We find that by reducing the dipolar force to the point at
which the trapping effect just vanishes, it is possible to optimize the
coupling of atoms into the fiber. Our simulations predict that by using a
low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a
20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms
from a MOT 9 mm away from the fiber. When MOT is positioned further away,
coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl
New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range
We present a method for producing sub-100 fs electron bunches that are
suitable for single-shot ultrafast electron diffraction experiments in the 100
keV energy range. A combination of analytical results and state-of-the-art
numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs
electron bunches with a spotsize smaller than 500 micron and a transverse
coherence length of 3 nm, using established technologies in a table-top set-up.
The system operates in the space-charge dominated regime to produce
energy-correlated bunches that are recompressed by established radio-frequency
techniques. With this approach we overcome the Coulomb expansion of the bunch,
providing an entirely new ultrafast electron diffraction source concept
Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization
Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to
be directly detected despite significant experimental effort. Previous attempts
have made use of large liquid-helium cooled electromagnets which inadvertently
generate spurious signals that mask the desired signal. We present a novel
approach for the ultra-sensitive detection of optical birefringence that can be
usefully applied to a laboratory detection of vacuum polarization. The new
technique has a predicted birefringence measurement sensitivity of in a 1 second measurement. When combined with the extreme
polarizing fields achievable in this design we predict that a vacuum
polarization signal will be seen in a measurement of just a few days in
duration.Comment: 9 pages, 2 figures. submitted to PR
Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction
We demonstrate compression of 95 keV, space-charge-dominated electron bunches
to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are
of sufficient quality to capture a diffraction pattern with a single shot,
which we demonstrate by a diffraction experiment on a polycrystalline gold
foil. Compression is realized by means of velocity bunching as a result of a
velocity chirp, induced by the oscillatory longitudinal electric field of a 3
GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs
Tests of relativity using a microwave resonator
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are
compared to set new constraints on a possible violation of Lorentz invariance.
We determine the variation of the oscillator frequency as a function of its
orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike
test) with respect to a preferred frame candidate. We constrain the
corresponding parameters of the Mansouri and Sexl test theory to and which is equivalent to the best previous result for the
former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3,
2002
- …