447 research outputs found

    Trapped electrons in the quantum degenerate regime

    Get PDF
    A full strength Coulomb interaction between trapped electrons can be felt only in absence of a neutralizing background. In order to study quantum degenerate electrons without such a background, an external trap is needed to compensate for the strong electronic repulsion. As a basic model for such a system, we study a trapped electron pair in a harmonic trap with an explicit inclusion of its Coulomb interaction. We find the eigenenergy of the ground state, confirming earlier work in the context of harmonium. We extend this to a complete set of properly scaled energies for any value of the trapping strength, including the excited states. The problem is solved either numerically or by making harmonic approximations to the potential. As function of the trapping strength a crossover can be made from the strongly to the weakly-coupled regime, and we show that in both regimes perturbative methods based on a pair-wise electron description would be effective for a many-particle trapped electron system, which resembles a Wigner crystal in the ground state of the strongly coupled limit

    Saturation Spectroscopy of Iodine in Hollow-core Optical Fibre

    Get PDF
    We present high-resolution spectroscopy of Iodine vapour that is loaded and trapped within the core of a hollow-core photonic crystal fibre (HC-PCF). We compare the observed spectroscopic features to those seen in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ~6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.Comment: 12 pages, 7 figure

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range

    Get PDF
    We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn∼1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR

    Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction

    Get PDF
    We demonstrate compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching as a result of a velocity chirp, induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs

    Tests of relativity using a microwave resonator

    Get PDF
    The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to δ−β+1/2=(1.5±4.2)×10−9\delta - \beta + 1/2 = (1.5\pm 4.2) \times 10^{-9} and β−α−1=(−3.1±6.9)×10−7\beta - \alpha - 1 = (-3.1\pm 6.9) \times 10^{-7} which is equivalent to the best previous result for the former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3, 2002
    • …
    corecore