1,628 research outputs found

    Strigolactone may interact with gibberellin to control apical dominance in pea (Pisum sativum)

    Get PDF
    The role of strigolactones as plant growth regulators has been demonstrated through research on biosynthesis and signaling mutant plants and through the use of GR24, a synthetic analog of this class of molecules. Strigolactone mutants show a bushy phenotype and GR24 application inhibits the growth of axillary buds in these mutants, thus restoring the phenotype of a wild plant, which is characterized by a stronger apical dominance. In this work, we tested the effectiveness of this chemical on pea (Pisum sativum) plants following apex removal, which disrupts apical dominance and leads to axillary bud outgrowth. Moreover, we searched for relationships between the response to the strigolactone and gibberellin metabolism by applying GR24 to both climbing and dwarf peas, the latters being mutants for gibberellin biosynthesis. The results suggest that the endogenous level of the bioactive gibberellin GA1 might modulate the response of decapitated pea plants to GR24, by changing bud sensitivity to the applied strigolactone

    Hormonal responses to water deficit in cambial tissues of Populus alba L.

    Get PDF
    Changes of the concentration of bioactive gibberellins and abscisic acid in the cambial region of white poplar (Populus alba L.) were investigated in one-year-old plants, to highlight how these phytohormone signals are modulated in response to water deficit. Plants were cultivated in pots outdoor and, at the time of maximum cambial growth (T0), irrigation was withdrawn for 8 d, inducing a mild water deficit, thus mimicking a condition that is recurrent in mediterranean climates when white poplar attains its maximum growth rate. The water deficit was suspended by resuming irrigation (Tmax), throughout a recovery period of two weeks (Trec). Cambial tissues were sampled at T0, Tmax and Trec. Significant changes of leaf and stem relative water content, leaf water potential, stomatal conductance, transpiration, carbon assimilation, stem shrinkage and leaf number were induced by soil water shortage, which also negatively affected cambium development. Nevertheless, these responses were almost fully reversed following the resumption of irrigation. Water deficit induced the accumulation of large amounts of abscisic acid in cambial tissues, but the hormone was brought back to pre-stress levels after the recovery period. With regard to bioactive gibberellins, GA1 was several fold more abundant than GA4 and reached the greatest level in the plants recovering from the water status imbalance. The possible functions of gibberellins and abscisic acid in the response of cambial tissues to water deficit are discussed in view of the known physiological roles and molecular mechanisms of action of these hormonal signals

    evidence that ca 2 cycling by the plasma membrane ca 2 atpase increases the excitability of the extracellular ca 2 sensing receptor

    Get PDF
    The extracellular Ca 2+ -sensing receptor (CaR) is a widely expressed G-protein-coupled receptor that translates information about [Ca 2+ ] in the extracellular milieu to the interior of the cell, usually via intracellular Ca 2+ signaling pathways. Using fura-2 imaging of cytoplasmic [Ca 2+ ], we observed that HEK293 cells expressing CaR oscillated readily under conditions permissive for CaR activation. Spiking was also triggered in the absence of external Ca 2+ by the CaR agonist spermine (1 mM). Oscillating cells were typically located in clusters of closely apposed cells, but Ca 2+ spiking was insensitive to the gap junction inhibitor 18α-glycyrrhetinic acid. We hypothesized that Ca 2+ signals might be amplified, in part, through a positive feedback loop in which Ca 2+ extrusion via the plasma membrane Ca 2+ -ATPase (PMCA) activates CaRs on the same cell or adjacent cells through local increases in [Ca 2+ ] out . In support of this idea, addition of exogenous Ca 2+ buffers (keeping free [Ca 2+ ] out constant) attenuated or eliminated Ca 2+ signals (manifested as oscillations), as did PMCA inhibitors (HgCl 2 , orthovanadate and Caloxin 2A1). Measurement of extracellular [Ca 2+ ] using the near membrane probe fura-C 18 revealed that external [Ca 2+ ] rose following receptor activation, sometimes displaying an oscillatory pattern. Our data suggest that PMCA-mediated cycling of Ca 2+ across the plasma membrane leads to localized increases in [Ca 2+ ] out that increase the excitability of CaR

    Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Get PDF
    Tryptophan (Trp) is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT) through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP) in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05) lower in the anorexic (11.64 ± 0.53 μg/ml, mean ± S.E.) than in the control (12.98 ± 0.37 μg/ml) groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed

    Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis.

    Get PDF
    The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK-TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress

    Stochastic simulations of minimal cells: the Ribocell model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last two decades, lipid compartments (liposomes, lipid-coated droplets) have been extensively used as in vitro "minimal" cell models. In particular, simple and complex biomolecular reactions have been carried out inside these self-assembled micro- and nano-sized compartments, leading to the synthesis of RNA and functional proteins inside liposomes. Despite this experimental progress, a detailed physical understanding of the underlying dynamics is missing. In particular, the combination of solute compartmentalization, reactivity and stochastic effects has not yet been clarified. A combination of experimental and computational approaches can reveal interesting mechanisms governing the behavior of micro compartmentalized systems, in particular by highlighting the intrinsic stochastic diversity within a population of "synthetic cells".</p> <p>Methods</p> <p>In this context, we have developed a computational platform called ENVIRONMENT suitable for studying the stochastic time evolution of reacting lipid compartments. This software - which implements a Gillespie Algorithm - is an improvement over a previous program that simulated the stochastic time evolution of homogeneous, fixed-volume, chemically reacting systems, extending it to more general conditions in which a collection of similar such systems interact and change over the course of time. In particular, our approach is focused on elucidating the role of randomness in the time behavior of chemically reacting lipid compartments, such as micelles, vesicles or micro emulsions, in regimes where random fluctuations due to the stochastic nature of reacting events can lead an open system towards unexpected time evolutions.</p> <p>Results</p> <p>This paper analyses the so-called Ribocell (RNA-based cell) model. It consists in a hypothetical minimal cell based on a self-replicating minimum RNA genome coupled with a self-reproducing lipid vesicle compartment. This model assumes the existence of two ribozymes, one able to catalyze the conversion of molecular precursors into lipids and the second able to replicate RNA strands. The aim of this contribution is to explore the feasibility of this hypothetical minimal cell. By deterministic kinetic analysis, the best external conditions to observe synchronization between genome self-replication and vesicle membrane reproduction are determined, while its robustness to random fluctuations is investigated using stochastic simulations, and then discussed.</p

    Analysis of the variation in the hsp70-1 and hsp90alpha mRNA expression in human myocardial tissue that has undergone surgical stress.

    Get PDF
    corecore