47 research outputs found

    Regulation of glyceraldehyde-3-phosphate dehydrogenase in the eustigmatophyte Pseudocharaciopsis ovalis is intermediate between a chlorophyte and a diatom

    Get PDF
    The regulation of NADPH-dependent GAPDH was analysed in the chromalveolate (eustigmatophyte) Pseudocharaciopsis ovalis and compared with the well-studied chlorophyte Chlamydomonas reinhardtii and with another chromalveolate(diatom), Asterionella formosa. Optimal pH for GAPDH activity in P. ovalis and C. reinhardtii ranged between 8 and 9, but in A. formosa ranged between 6.2 and 8.1. Assuming dark pH values of about 7 in the plastids of all three species, GAPDH would be down-regulated in the dark in C. reinhardtii and P. ovalis, but fully active in A. formosa. The time required for halfmaximal GAPDH activity on transfer to reducing conditions, was significantly different in each species: 1.4, 4.0 and 5.9 min in A. formosa, P. ovalis and C. reinhardtii respectively. Under oxidized conditions in P. ovalis and A. formosa, NADPH caused a large inhibition in GAPDH activity even at very low concentrations (10 to 20 mM) unlike in C. reinhardtii. This inhibition was relieved by addition of a reducing agent suggesting that NADPH can control GAPDH activity under dark-light transitions. A small increase of GAPDH activity with NADP at concentrations higher than 0.5mM was observed with P. ovalis and C. reinhardtii, while a greater than 1.5-fold stimulation was observed in A. formosa. Regulation of GAPDH in P. ovalis was intermediate between the diatom and the chlorophyte and the possible evolutionary reasons for this are discussed

    A new type of flexible CP12 protein in the marine diatom <i>Thalassiosira pseudonana</i>

    Get PDF
    International audienceBackground: CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods: A combination of biochemical, bioinformatics and biophysical methods including electrospray ionizationmass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results: Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions: These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle

    Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon

    Get PDF
    BACKGROUND: Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. METHODS: A cross-sectional study was carried out in two indigenous population groups in Amazonas/Venezuela. Data from the regional malaria documentation system were extracted and participants from the ethnic groups of the Guahibo (n = 180) and Piaroa (n = 295) were investigated for the presence of Plasmodium parasites and naturally acquired antibodies to Plasmodium falciparum antigens in serum. The GMZ2 vaccine candidate proteins MSP3 and GLURP were chosen as serological markers. RESULTS: The incidence of P. falciparum in both communities was found to be less than 2%, and none of the participants harboured P. falciparum at the time of the cross-sectional. Nearly a quarter of the participants (111/475; 23,4%) had positive antibody titres to at least one of the antigens. 53/475 participants (11.2%) were positive for MSP3, and 93/475 participants (19.6%) were positive for GLURP. High positive responses were detected in 36/475 participants (7.6%) and 61/475 participants (12.8%) for MSP3 and GLURP, respectively. Guahibo participants had significantly higher antibody titres than Piaroa participants. CONCLUSIONS: Considering the low incidence of P. falciparum, submicroscopical infections may explain the comparatively high anti-P. falciparum antibody concentrations

    Información Investigador: Avilan Hernández, Luisana

    No full text
    Resumen Curricular Licenciada en Biología en la Universidad Central de Venezuela, Doctorado en la Universidad de Paris VII en Biofísica Molecular. Profesora Asociada de la Universidad de Los Andes. Miembro del Centro de Ingeniería Genética (CIGEN) y del Laboratorio de Enzimología de Parásitos - ULA.Doctorado4027II - 2003; I - 2001115 - 2005; 65 - 2003; 66 - 2002Relación parásito - hospedador, sistema fibrinolítico, enzimología.Marzo de 2007Lic. en Biología+58 274 2401308Facultad de [email protected]

    Carbon fixation in chloroplasts

    No full text
    International audienceResume :Ribulose-1, 5-bisphosphate carboxylase-oxygenaseGlyceraldehyde-3-phosphate dehydrogenaseFructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase 197PhosphoribulokinaseOther important enzymes in the Calvin cycleSupramolecular complexes of the Calvin cycl
    corecore