8 research outputs found

    Cloning and expression analysis of a Petunia hybrida flower specific mitotic-like cyclin

    Get PDF
    AbstractA cyclin cDNA clone (Pethy;CycB1;1) was isolated from a Petunia hybrida ovary specific cDNA library. Sequence comparison revealed that Pethy;CYCB1;1 protein is highly homologous to mitotic B1 cyclins. Northern analysis and in situ hybridisation experiments showed that its expression is developmentally regulated and restricted to flower organs. We have attempted to define some of the cell division patterns which contribute to shaping each floral organ by analysing Pethy;CycB1;1 expression on Petunia flower sections. While in sepals, epidermis and parenchyma cell division patterns were comparable, there were two distinct cell division patterns in petals. In the epidermis, Pethy;CYCB1;1 expression was found both at the petal tip and along epidermis, whereas in the parenchyma only at the petal tips. In reproductive organs cell divisions were detected only in sporophytic tissues. No signals were detected inside meiotic cells

    An Italian functional genomic resource for Medicago truncatula

    Get PDF
    Background: Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes. Findings: Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States

    Patterns of cell division and expansion in developing petals of Petunia hybrida

    No full text
    The definition of the patterns of cell division and expansion in plant development is of fundamental importance in understanding the mechanics of morphogenesis. By studying cell division and expansion patterns, we have assembled a developmental map of Petunia hybrida petals. Cycling cells were labelled with in situ markers of the cell cycle, whereas cell expansion was followed by assessing cell size in representative regions of developing petals. The outlined cell division and expansion patterns were related to organ asymmetry. Initially, cell divisions are uniformly distributed throughout the petal and decline gradually, starting from the basal part, to form a striking gradient of acropetal polarity. Cell areas, in contrast, increased first in the basal portion and then gradually towards the petal tip. This growth strategy highlighted a cell size control model based on cell-cycle departure time. The dorso-ventral asymmetry can be explained in terms of differential regulation of cell expansion. Cells of the abaxial epidermis enlarged earlier to a higher final extent than those of the adaxial epidermis. Epidermal appendage differentiation contributed to the remaining asymmetry. On the whole our study provides a sound basis for mutant analyses and to investigate the impact of specific (environmental) factors on petal growth

    Cloning and expression analysis of a <i>Petunia hybrida</i> flower specific mitotic-like cyclin

    No full text
    A cyclin cDNA clone (Pethy;CycB1;1) was isolated from a Petunia hybrida ovary specific cDNA library. Sequence comparison revealed that Pethy;CYCB1;1 protein is highly homologous to mitotic B1 cyclins. Northern analysis and in situ hybridisation experiments showed that its expression is developmentally regulated and restricted to flower organs. We have attempted to define some of the cell division patterns which contribute to shaping each floral organ by analysing Pethy;CycB1;1 expression on Petunia flower sections. While in sepals, epidermis and parenchyma cell division patterns were comparable, there were two distinct cell division patterns in petals. In the epidermis, Pethy;CYCB1;1 expression was found both at the petal tip and along epidermis, whereas in the parenchyma only at the petal tips. In reproductive organs cell divisions were detected only in sporophytic tissues. No signals were detected inside meiotic cells

    Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs

    No full text
    The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 α-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition

    An Italian functional genomic resource for <it>Medicago truncatula</it>

    No full text
    Abstract Background Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes. Findings Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States.</p
    corecore