2 research outputs found

    Enhanced Vertical Concentration Gradient in Rubbed P3HT:PCBM Graded Bilayer Solar Cells

    No full text
    Graded bilayer solar cells have proven to be at least as efficient as the bulk heterojunctions when it comes to the Poly­(3-hexylthiophene) (P3HT) - [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) donor–acceptor system. However, control of the vertical concentration gradient using simple techniques has never been reported. We demonstrate that rubbing the P3HT layer prior to PCBM deposition induces major morphological changes in the active layer. Using the newly introduced energy-dispersive X-ray spectroscopy element mapping technique, we found that rubbing P3HT induces the formation of an ideal vertical donor–acceptor concentration gradient. Furthermore, the P3HT crystallites undergo a molecular reorientation from edge-on to face-on configuration inducing a better charge transport in the vertical direction. The combination of these two major morphological changes leads to the fabrication of high-performance solar cells that exhibit, to date, the record efficiencies for spin-coated graded bilayers solar cells

    Assembly of the Intraskeletal Coral Organic Matrix during Calcium Carbonate Formation

    No full text
    Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention. In this research, we study the deposition of calcium carbonate on a model substrate, silicon, in the presence of SOM extracted from the skeleton of two coral species representative of different living habitats and colonization strategies, which we previously characterized. The study is performed mainly by grazing incidence X-ray diffraction with the support of Raman spectroscopy and electron and optical microscopies. The results show that SOM macromolecules once adsorbed on the substrate self-assembled in a layered structure and induced the oriented growth of calcite, inhibiting the formation of vaterite. Differently, when SOM macromolecules were dispersed in solution, they induced the deposition of amorphous calcium carbonate (ACC), still preserving a layered structure. The entity of these effects was species-dependent, in agreement with previous studies. In conclusion, we observed that in the setup required by the experimental procedure, the SOM from corals appears to present a 2D lamellar structure. This structure is preserved when the SOM interacts with ACC but is lost when the interaction occurs with calcite. This knowledge not only is completely new for coral biomineralization but also has strong relevance in the study of biomineralization on other organisms
    corecore