4 research outputs found

    Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes

    No full text
    The molecular self-assembly of surfactants on the surface of single-walled carbon nanotubes (SWCNT) is currently a common strategy for the tuning of nanotube properties and the stabilization of carbon nanotube dispersions. Here, we report direct measurements of the degree of interfacial ordering for sodium dodecyl sulfate (SDS) surfactants adsorbed on colloidal, single-chirality enriched, SWCNTs within a solid film and investigate the dependence of surface alkyl chain order on the surfactant concentration in the precursor solution. The degree of order for the SWCNT-bound SDS molecules, is probed by vibrational sum frequency generation (VSFG) spectroscopy. We find concrete evidence for the presence of highly ordered surface structures at sufficiently high SDS concentrations, attributed here to cylindrical-like micelle assemblies with the SWCNT at the core. As the SDS concentration decreases, the interfacial order is found to decrease as well, generating a more disordered or random adsorption of surfactants on the nanotube surfaces

    Aggregated States of Chalcogenorhodamine Dyes on Nanocrystalline Titania Revealed by Doubly Resonant Sum Frequency Spectroscopy

    No full text
    Broadband doubly resonant sum frequency generation (DR-SFG) spectroscopy was used to probe selectively the vibrational signatures of a series of chalcogenorhodamine dyes tethered to TiO<sub>2</sub> either as monomers or as H-aggregates. This selectivity was achieved by virtue of the vibronic coupling associated with the unique electronic transitions for the corresponding states. It was found that clear spectral differences and polarization dependences were observed contingent on whether the outgoing SFG wavelength was in resonance with either the monomer or H-aggregate electronic excited states. Our results also indicate that the orientation and proximity of the xanthylium core to the semiconducting surface play an important role in this vibrational–electronic coupling and may affect the character of the charge-transfer complex. Our DR-SFG results also provide important clues into the anchoring motifs for carboxylic and phosphonic acid groups

    Tuning the Surface Ordering of Self-Assembled Ionic Surfactants on Semiconducting Single-Walled Carbon Nanotubes: Concentration, Tube Diameter, and Counterions

    No full text
    We report direct spectroscopic measurements of the macromolecular organization of ionic surfactants on the surface of semiconducting single-walled carbon nanotubes (SWCNTs) within solution-processed thin films. By using vibrational sum frequency generation (VSFG) spectroscopy, sensitive measurements of interfacial surfactant ordering were obtained as a function of surfactant concentration for sodium dodecyl sulfate (SDS)-encapsulated (6,5) and (7,6) SWCNTs with and without excess electrolytes. Anionic surfactants are known to effectively stabilize SWCNTs. The current models suggest a strong influence of the dispersion conditions on the surfactant interfacial macromolecular organization and self-assembly. Direct experimental probes of such an organization using nanotubes of specific chirality are needed to validate the existing models. We found that as the bulk SDS concentration increases near the surfactant critical micelle concentration, the interfacial ordering increased, approaching the formation of cylindrical-like micelles with the nanotube at the core. At the higher surfactant concentrations measured here, the (6,5) SWCNTs produced more ordered structures relative to those with the (7,6) SWCNTs. The relatively larger-diameter (7,6) chiral tubes support enhanced van der Waals (vdW) interactions between the tube carbon surface and the surfactant methylene chain groups that likely increase the density of gauche defects. A new effect arises when the precursor solution is exposed to a small concentration of divalent Ca<sup>2+</sup> counterions. We postulate that a salt-bridging configuration on such highly curved surfaces decreases the ordering of interfacial surfactant molecules, resulting in compact, disordered structures. However, this phenomenon was not observed with excess Na<sup>+</sup> ions at the same ionic strength. Instead, a modest increase in surfactant ordering was observed with the excess monovalent electrolyte. These results provide new insights for thin film solution processing of vdW nanomaterials and demonstrate that VSFG is a sensitive probe of surfactant organization on nanostructures

    Accurate Line Shapes from Sub‑1 cm<sup>–1</sup> Resolution Sum Frequency Generation Vibrational Spectroscopy of α‑Pinene at Room Temperature

    No full text
    Despite the importance of terpenes in biology, the environment, and catalysis, their vibrational spectra remain unassigned. Here, we present subwavenumber high-resolution broad-band sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene that reveal 10 peaks in the C–H stretching region at room temperature. The high spectral resolution resulted in spectra with more and better resolved spectral features than those of the Fourier transform infrared, femtosecond stimulated Raman spectra in the bulk condensed phase and those of the conventional BB-SFG and scanning SFG spectroscopy of the same molecule on a surface. Experiment and simulation show the spectral line shapes with HR-BB-SFG to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 ps are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations. Phase-resolved spectra provided their orientational information. We propose the new spectroscopy as an attractive alternative to time domain vibrational spectroscopy or heterodyne detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules at molecular surfaces or interfaces
    corecore