8 research outputs found

    Dynamics of the Formation of a Charge Transfer State in 1,2-Bis(9-anthryl)acetylene in Polar Solvents: Symmetry Reduction with the Participation of an Intramolecular Torsional Coordinate

    No full text
    We have studied 1,2-bis­(9-anthryl)­acetylene as a model compound for the characterization of the process of solvent-mediated symmetry reduction in an excited state. Thanks to the acetylenic bridge that joins the two anthracenic moieties, this system maintains minimal steric hindrance between the end chromophores in comparison with the classic 9,9′-bianthryl model compound. The acetylenic bridge also allows for significant electronic coupling across the molecule, which permits a redistribution of electron density after light absorption. Femtosecond resolved fluorescence measurements were used to determine the spectral evolution in acetonitrile and cyclohexane solutions. We observed that, for 1,2-bis­(9-anthryl)­acetylene, the formation of a charge transfer state occurs in a clear bimodal fashion with well separated time scales. Specifically, the evolution of the emission spectrum involves a first solvent-response mediated subpicosecond stage where the fluorescence changes from that typical of nonpolar solvents (locally excited) to an intermediate, partial charge transfer state. The second stage of the evolution into a full charge transfer state occurs with a much longer time constant of 37.3 ps. Since in this system the steric hindrance is minimized, this molecule can undergo much larger amplitude motions for the torsion between the two anthracenic moieties associated with the charge redistribution in comparison with the typical model compound 9,9′-bianthryl. Clearly, the larger range of motions of 1,2-bis­(9-anthryl)­acetylene gives the opportunity to study the electron transfer process with a good separation of the time scales for the formation of a partial charge transfer state, determined by the speed of solvent response, and the intramolecular changes associated with the formation of the fully equilibrated charge transfer state

    Nitrated Fluorophore Formation upon Two-Photon Excitation of an Azide with Extended Conjugation

    No full text
    The transformation of an aromatic azide into a highly fluorescent species through a nonlinear optical process was studied. The azide system was designed to undergo N<sub>2</sub> release and nitrene to nitro conversion upon two-photon electronic excitation. The formation of the nitro form of the compound through reactions with O<sub>2</sub> and its high radiative quantum yield implies that the azide can be used as a biphotonic activatable fluorogen. The electronic state in which the azide to nitrene transformation takes place can be accessed nonlinearly with near-infrared light which allows for photoactivation with commonly available lasers. Furthermore, the system was built with a sulfonate functionality which allows for the molecule to be adsorbed at surfaces like that of cadmium sulfide nanocrystals which further improves the nonlinear optical absorption properties in the composite, through an energy transfer mechanism. The yield of the process as a function of the excitation photon energy together with computational studies indicate that the N<sub>2</sub> release in this azide is due to a reactive channel in the second singlet excited state of the molecule. This feature implies that the system is intrinsically photostable for excitation below and above a certain wavelength and that the system can be phototriggered selectively by the nonlinear optical process

    Organic–Inorganic Hybrid Glasses of Atomically Precise Nanoclusters

    No full text
    Organic–inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure–property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal–liquid–glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics

    Organic–Inorganic Hybrid Glasses of Atomically Precise Nanoclusters

    No full text
    Organic–inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure–property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal–liquid–glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics

    Quantum Tunneling Effect in CsPbBr<sub>3</sub> Multiple Quantum Wells

    No full text
    Two-dimensional (2D) lead halide perovskites (LHPs) have garnered incredible attention thanks to their exciting optoelectronic properties and intrinsic strong quantum confinement effect. Herein, we carefully investigate and decipher the charge carrier dynamics at the interface between CsPbBr3 multiple quantum wells (MQWs) as the photoactive layer and TiO2 and Spiro-OMeTAD as electron and hole transporting materials, respectively. The fabricated MQWs comprise three monolayers of CsPbBr3 separated by 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as barriers. By varying the BCP thickness, we show that charge carrier extraction from MQWs to the corresponding extracting layer occurs through a quantum tunneling effect, as elaborated by steady-state and time-resolved photoluminescence measurements and further verified by femtosecond transient absorption experiments. Ultimately, we have investigated the impact of the barrier-thickness-dependent quantum tunneling effect on the photoelectric behavior of the synthesized QW photodetector devices. Our findings shed light on one of the most promising approaches for efficient carrier extraction in quantum-confined systems

    Organic–Inorganic Hybrid Glasses of Atomically Precise Nanoclusters

    No full text
    Organic–inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure–property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal–liquid–glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics

    Organic–Inorganic Hybrid Glasses of Atomically Precise Nanoclusters

    No full text
    Organic–inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure–property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal–liquid–glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics

    Organic–Inorganic Hybrid Glasses of Atomically Precise Nanoclusters

    No full text
    Organic–inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure–property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal–liquid–glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics
    corecore