5 research outputs found

    Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    Get PDF
    BACKGROUND: Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. METHODS AND FINDINGS: 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. CONCLUSIONS: The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents

    Spinocerebellar Ataxia Type 2 Is Associated with the Extracellular Loss of Superoxide Dismutase but Not Catalase Activity

    No full text
    BackgroundSpinocerebellar ataxia type 2 (SCA2) is an inherited and still incurable neurodegenerative disorder. Evidence suggests that pro-oxidant agents as well as factors involved in antioxidant cellular defenses are part of SCA2 physiopathology.AimTo assess the influence of superoxide dismutase (SOD3) and catalase (CAT) enzymatic activities on the SCA2 syndrome.MethodClinical, molecular, and electrophysiological variables, as well as SOD3 and CAT enzymatic activities were evaluated in 97 SCA2 patients and in 64 age- and sex-matched control individuals.ResultsSpinocerebellar ataxia type 2 patients had significantly lower SOD3 enzymatic activity than the control group. However, there were no differences between patients and controls for CAT enzymatic activity. The effect size for the loss of patients’ SOD3 enzymatic activity was 0.342, corresponding to a moderate effect. SOD3 and CAT enzymatic activities were not associated with the CAG repeat number at the ATXN2 gene. SOD3 and CAT enzymatic activities did not show significant associations with the age at onset, severity score, or the studied electrophysiological markers.ConclusionThere is a reduced SOD3 enzymatic activity in SCA2 patients with no repercussion on the clinical phenotype

    Redox Imbalance Associates with Clinical Worsening in Spinocerebellar Ataxia Type 2

    No full text
    Background. Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease presenting with redox imbalance. However, the nature and implications of redox imbalance in SCA2 physiopathology have not been fully understood. Objective. The objective of this study is to assess the redox imbalance and its association with disease severity in SCA2 mutation carriers. Methods. A case-control study was conducted involving molecularly confirmed SCA2 patients, presymptomatic individuals, and healthy controls. Several antioxidant parameters were assessed, including serum thiol concentration and the superoxide dismutase, catalase, and glutathione S-transferase enzymatic activities. Also, several prooxidant parameters were evaluated, including thiobarbituric acid-reactive species and protein carbonyl concentrations. Damage, protective, and OXY scores were computed. Clinical correlates were established. Results. Significant differences were found between comparison groups for redox markers, including protein carbonyl concentration (F=3.30; p=0.041), glutathione S-transferase activity (F=4.88; p=0.009), and damage (F=3.20; p=0.045), protection (F=12.75; p<0.001), and OXY (F=7.29; p=0.001) scores. Protein carbonyl concentration was positively correlated with CAG repeat length (r=0.27; p=0.022), while both protein carbonyl concentration (r=−0.27; p=0.018) and OXY score (r=−0.25; p=0.013) were inversely correlated to the disease duration. Increasing levels of antioxidants and decreasing levels of prooxidant parameters were associated with clinical worsening. Conclusions. There is a disruption of redox balance in SCA2 mutation carriers which depends on the disease stage. Besides, redox changes associate with markers of disease severity, suggesting a link between disruption of redox balance and SCA2 physiopathology

    Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2

    No full text
    corecore