23,235 research outputs found

    Multi-particle structures in non-sequentially reorganized hard sphere deposits

    Full text link
    We have examined extended structures, bridges and arches, in computer generated, non-sequentially stabilized, hard sphere deposits. The bridges and arches have well defined distributions of sizes and shapes. The distribution functions reflect the contraints associated with hard particle packing and the details of the restructuring process. A subpopulation of string-like bridges has been identified. Bridges are fundamental microstructural elements in real granular systems and their sizes and shapes dominate considerations of structural properties and flow instabilities such as jamming.Comment: 9 pages, 7 figure

    Flow rate of polygonal grains through a bottleneck: Interplay between shape and size

    Get PDF
    We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria.Comment: 9 pages, 8 figure

    Exact predictions from Edwards ensemble vs. realistic simulations of tapped narrow two-dimensional granular columns

    Full text link
    We simulate via a Discrete Element Method the tapping of a narrow column of disk under gravity. For frictionless disks, this system has a simple analytic expression for the density of states in the Edwards volume ensemble. We compare the predictions of the ensemble at constant compactivity against the results for the steady states obtained in the simulations. We show that the steady states cannot be properly described since the microstates sampled are not in correspondence with the predicted distributions, suggesting that the postulates of flat measure and ergodicity are, either or both, invalid for this simple realization of a static granular system. However, we show that certain qualitative features of the volume fluctuations difficult to predict from simple arguments are captured by the theory.Comment: 11 pages, 6 figure

    A New Form of Path Integral for the Coherent States Representation and its Semiclassical Limit

    Full text link
    The overcompleteness of the coherent states basis leads to a multiplicity of representations of Feynman's path integral. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. Two such semiclassical formulas were derived in \cite{Bar01} for the two corresponding path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}. Each of these formulas involve trajectories governed by a different classical representation of the Hamiltonian operator: the P representation in one case and the Q representation in other. In this paper we construct a third representation of the path integral whose semiclassical limit involves directly the Weyl representation of the Hamiltonian operator, i.e., the classical Hamiltonian itself.Comment: 16 pages, no figure
    corecore