80 research outputs found

    The cell as a gel: materials for a conceptual discussion

    Get PDF
    Recent results from our laboratory support the view that the intracellular milieu cannot be treated as a homogeneous dilute system and, more importantly, reveal for the first time a dynamical coupling between intracellular water and an active metabolic process involving fluctuations in ATP concentration. These results are difficult to understand in light of the premises that currently underpin the description of the function of cellular systems, e.g. van’t Hoff’s ideal solution theory, diffusion and mass action kinetics. Particularly, they emphasize the need to incorporate features of the cell interior that have been largely overlooked in the dominant model of the cell, such as crowding and limited availability of free water. This article discusses this problem by reconsidering an alternate view, called the association-induction hypothesis, which emphasizes the relevance of emergent properties of the cell cytosol during cellular function. This hypothesis provides a very reasonable theoretical framework to explain recently reported observations about the dynamical coupling of mechanochemical (i.e. viscoelastic) properties of the cell cytoplasm and cellular chemical transformations (metabolism).Los resultados experimentales obtenidos recientemente en nuestro laboratorio apoyan la idea que el medio intracelular no puede ser tratado como un sistema homogéneo (o solución diluida), revelando además por primera vez un acoplamiento dinámico entre el comportamiento colectivo del agua intracelular y un proceso metabólico activo que muestra fluctuaciones en la concentración de ATP. Estos nuevos resultados -que son difíciles de interpretar en base a los supuestos más generalmente utilizados para interpretar las bases fisicoquímicas de la fisiología de los sistemas celulares (p.ej. teoría de las soluciones ideales de van't Hoff, difusión, y cinética de acción de masas)- subrayan la necesidad urgente de incorporar características importantes del interior celular, tales como el hacinamiento molecular y la escasa disponibilidad de agua libre. Este artículo analiza críticamente este problema considerando una hipótesis alternativa, llamada hipótesis de asociación-inducción, la cual hace hincapié en la importancia de las propiedades emergentes del citosol durante la función celular. Esta hipótesis proporciona un marco teórico razonable para explicar nuestras observaciones, particularmente el acoplamiento dinámico entre las propiedades mecanoquímicas (o viscoelásticas) del citoplasma celular y las transformaciones químicas (metabolismo) en el interior celular.Sociedad Argentina de Fisiologí

    Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    Get PDF
    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes

    Microscopy imaging of membrane domains

    No full text

    Life: as a matter of fat : lipids in a membrane biophysics perspective

    No full text
    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being as important for life as proteins, sugars, and genes. This significantly expanded and revised edition takes into account the tremendous amount of knowledge gained over the past decade.  In addition, the book now includes more tutorial material on the biochemistry of lipids and the principles of lipid self-assembly.   The book is aimed at undergraduate students and young research workers within physics, chemistry, biochemistry, molecular biology, nutrition, as well as pharmaceutical and biomedical sciences.   From the reviews of the first edition:   "This is a highly interesting book and a pleasure to read. It represents a new and excellent pedagogical introduction to the field of lipids and the biophysics of biological membranes. I reckon that physicists and chemists as well as biologists will benefit from this approach to the field and Mouritsen shows a deep insight into the physical chemistry of lipids." (Göran Lindblom, Chemistry and Physics of Lipids 2005, vol. 135, page 105-106)   "The book takes the reader on an exciting journey through the lipid world, and Mouritsen attracts the attention with a lively style of writing … . a comprehensive view of the ‘lipid sea’ can be easily achieved, gaining the right perspectives for envisaging future developments in the nascent field of lipidomics." (Carla Ferreri, ChemBioChem, Vol. 6 (8), 2005)

    Direct Visualization of the Lateral Structure of Porcine Brain Cerebrosides/POPC Mixtures in Presence and Absence of Cholesterol

    Get PDF
    We studied the thermal behavior of membranes composed of mixtures of natural cerebrosides (from porcine brain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with and without cholesterol, using differential scanning calorimetry, Fourier transform infrared spectroscopy, and confocal/multiphoton fluorescence microscopy. The POPC/cerebroside mixture display solid ordered/liquid disordered phase coexistence in a broad range of compositions and temperatures in agreement with previous results reported for POPC/(bovine brain)cerebrosides. The observed phase coexistence scenario consists of elongated, micrometer-sized cerebroside-rich solid ordered domains that span the bilayer, embedded in a POPC-rich liquid disordered phase. The data obtained from differential scanning calorimetry and Fourier transform infrared spectroscopy was in line with that obtained in the microscopy experiments for the binary mixture, except at very high cerebroside molar fractions (0.8–0.9) were some differences are observed. Cholesterol incorporation exerts strong changes on the lateral organization of POPC/porcine brain cerebroside membranes. At intermediate cholesterol concentrations (10–25 mol %) the solid ordered/liquid disordered phase coexistence scenario gradually transform to a solid ordered/liquid ordered one. Above 25 mol % of cholesterol two distinct regions with liquid ordered phase character are visualized in the membrane until a single liquid ordered phase forms at 40 mol % cholesterol. The observed cholesterol effect largely differs from that reported for POPC/porcine brain ceramide, reflecting the impact of the sphingolipids polar headgroup on the membrane lateral organization

    Interactions Between Profilin And Polyphosphatidylinositol Lipids

    No full text
    Profilin is a small (12-15 kDa) actin binding protein. Profilin is also involved in the signaling pathway linking receptors in the cell membrane to the microfilament system within the cell. Profilin is thought to play critical roles in this signaling pathway through its interaction with polyphosphoinositides (PPI). To date, profilin's interaction with PPI has only been studied in micelles or small vesicles. Profilin binds with high affinity to small clusters of phosphatidylinositol (4, 5) bis-phosphate [PI(4, 5)P₂] molecules. In this work, we investigated the interactions of profilin with sub-micellar concentrations of PI(4, 5)P₂ and PI(3, 4, 5)P₃. Fluorescence anisotropy was used to determine the relevant dissociation constants for binding of sub-micellar concentrations of fluorescently labeled PPI lipids to profilin and we show that these are significantly different from those determined for profilin interaction with micelles or small vesicles. Despite the low affinity for submicellar concentration of PI(4, 5)P₂, profilin was shown to bind to Giant unilamellar vesicles in presence of 1% mole fraction of PI(4, 5)P₂ Forster Resonance Energy Transfer experiments indicate that profilin is able to recruit adjacent PI(4, 5)P₂ molecules after initial interaction with the GUV membrane. The implications of these findings are discussed
    corecore