16 research outputs found

    Balloon cells promote immune system activation in focal cortical dysplasia type 2b

    Get PDF
    AIMS: Focal cortical dysplasia (FCD) type 2 is an epileptogenic malformation of the neocortex associated with somatic mutations in the mammalian target of rapamycin (mTOR) pathway. Histopathologically, FCD 2 is subdivided into FCD 2a and FCD 2b, the only discriminator being the presence of balloon cells (BCs) in FCD 2b. While pro‐epileptogenic immune system activation and inflammatory responses are commonly detected in both subtypes, it is unknown what contextual role BCs play. METHODS: The present study employed RNA sequencing of surgically resected brain tissue from FCD 2a (n = 11) and FCD 2b (n = 20) patients compared to autopsy control (n = 9) focusing on three immune system processes: adaptive immunity, innate immunity and cytokine production. This analysis was followed by immunohistochemistry on a clinically well‐characterised FCD 2 cohort. RESULTS: Differential expression analysis revealed stronger expression of components of innate immunity, adaptive immunity and cytokine production in FCD 2b than in FCD 2a, particularly complement activation and antigen presentation. Immunohistochemical analysis confirmed these findings, with strong expression of leukocyte antigen I and II in FCD 2b as compared to FCD 2a. Moreover, T‐lymphocyte tissue infiltration was elevated in FCD 2b. Expression of markers of immune system activation in FCD 2b was concentrated in subcortical white matter. Lastly, antigen presentation was strongly correlated with BC load in FCD 2b lesions. CONCLUSION: We conclude that, next to mutation‐driven mTOR activation and seizure activity, BCs are crucial drivers of inflammation in FCD 2b. Our findings indicate that therapies targeting inflammation may be beneficial in FCD 2b

    Loss of maturity and homeostatic functions in Tuberous Sclerosis Complex-derived astrocytes

    Get PDF
    IntroductionConstitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network.MethodsWe employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment.ResultsWe found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities.DiscussionOur study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions

    Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering

    Get PDF
    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review

    Plasticity trough Astrocytes: How the Glue becomes the Solvent

    No full text
    An overview of various functions of astrocytes and their possible influence on synaptic plasticity.

    Em sensor array system and performance evaluation for in-line measurement of phase transformation in steel

    Get PDF
    In a hot strip mill (HSM), the evolution of phase transformation in steel during the dynamic cooling process on a runout table has a significant effect on the microstructure and mechanical properties of hot-rolled materials and further processing in the subsequent processing steps. An electromagnetic (EM) sensor array system, EMSpec® (ElectroMagnetic Spectroscopy), has been developed for in-line measurement of steel phase transformation. The first industrialised system has been installed on the run-out table (ROT) of HSM #2 at Tata Steel in the Netherlands for industrial trials. The EMSpec system consists of multiple sensor nodes located at different positions on the run-out table. Each sensor node measures the impedance spectrum, from which the amount of transformed phase fraction is determined based on a measurement model. All of the sensor nodes are calibrated for the delivery of proper sensor signals, such that progressively increasing phase transformation of the steel strip travelling from one node to the next can be correctly measured. Besides the sensing principle and system calibration, this paper presents in-line measurement results, which are interpreted and compared with phase transformation predictions from a physical thermodynamic and kinetic phase transformation model
    corecore