31 research outputs found

    Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer.

    Get PDF
    Photoimmunotherapy (PIT) of cancer utilizes tumor-specific monoclonal antibodies conjugated to a photosensitizer phthalocyanine dye IR700 which becomes cytotoxic upon irradiation with near infrared light. In this study, we aimed to evaluate the efficacy of PIT on human pancreatic cancer cells in vitro and in vivo in an orthotopic nude mouse model. The binding capacity of anti-CEA antibody to BxPC-3 human pancreatic cancer cells was determined by FACS analysis. An in vitro cytotoxicity assay was used to determine cell death following treatment with PIT. For in vivo determination of PIT efficacy, nude mice were orthotopically implanted with BxPC-3 pancreatic tumors expressing green fluorescent protein (GFP). After tumor engraftment, the mice were divided into two groups: (1) treatment with anti-CEA-IR700 + 690 nm laser and (2) treatment with 690 nm laser only. Anti-CEA-IR700 (100 μg) was administered to group (1) via tail vein injection 24 hours prior to therapy. Tumors were then surgically exposed and treated with phototherapy at an intensity of 150 mW/cm2 for 30 minutes. Whole body imaging was done subsequently for 5 weeks using an OV-100 small animal imaging system. Anti-CEA-IR700 antibody bound to the BxPC3 cells to a high degree as shown by FACS analysis. Anti-CEA-IR700 caused extensive cancer cell killing after light activation compared to control cells in cytotoxicity assays. In the orthotopic models of pancreatic cancer, the anti-CEA-IR700 group had significantly smaller tumors than the control after 5 weeks (p<0.001). There was no significant difference in the body weights of mice in the anti-CEA-IR700 and control groups indicating that PIT was well tolerated by the mice

    Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    No full text
    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model

    Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    No full text
    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model

    Polyethylene glycol (PEG) linked to near infrared (NIR) dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA) antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Get PDF
    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases

    Fluorescence-guided Surgery with a Fluorophore-conjugated Antibody to Carcinoembryonic Antigen (CEA), that Highlights the Tumor, Improves Surgical Resection and Increases Survival in Orthotopic Mouse Models of Human Pancreatic Cancer

    No full text
    BackgroundWe have developed a method of distinguishing normal tissue from pancreatic cancer in vivo using fluorophore-conjugated antibody to carcinoembryonic antigen (CEA). The objective of this study was to evaluate whether fluorescence-guided surgery (FGS) with a fluorophore-conjugated antibody to CEA, to highlight the tumor, can improve surgical resection and increase disease-free survival (DFS) and overall survival (OS) in orthotopic mouse models of human pancreatic cancer.MethodsWe established nude-mouse models of human pancreatic cancer with surgical orthotopic implantation of the human BxPC-3 pancreatic cancer. Orthotopic tumors were allowed to develop for 2 weeks. Mice then underwent bright-light surgery (BLS) or FGS 24 h after intravenous injection of anti-CEA-Alexa Fluor 488. Completeness of resection was assessed from postoperative imaging. Mice were followed postoperatively until premorbid to determine DFS and OS.ResultsComplete resection was achieved in 92 % of mice in the FGS group compared to 45.5 % in the BLS group (p = 0.001). FGS resulted in a smaller postoperative tumor burden (p = 0.01). Cure rates with FGS compared to BLS improved from 4.5 to 40 %, respectively (p = 0.01), and 1-year postoperative survival rates increased from 0 % with BLS to 28 % with FGS (p = 0.01). Median DFS increased from 5 weeks with BLS to 11 weeks with FGS (p = 0.0003). Median OS increased from 13.5 weeks with BLS to 22 weeks with FGS (p = 0.001).ConclusionsFGS resulted in greater cure rates and longer DFS and OS using a fluorophore-conjugated anti-CEA antibody. FGS has potential to improve the surgical treatment of pancreatic cancer

    Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle

    No full text
    The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid binding protein (FABPpm) is also known to be involved in sacrolemmal LCFA transport, and it is also present on the mitochondria. At this location, it has been identified as mitochondrial aspartate amino transferase (mAspAT), despite being structurally identical to FABPpm. Whether this protein is also involved in mitochondrial LCFA transport and oxidation remains unknown. Therefore, we have examined the ability of FABPpm/mAspAT to alter mitochondrial fatty acid oxidation. Muscle contraction increased (P < 0.05) the mitochondrial FAT/CD36 content in rat (+22%) and human skeletal muscle (+33%). By contrast, muscle contraction did not alter the content of mitochondrial FABPpm/mAspAT protein in either rat or human muscles. Electrotransfecting rat soleus muscles, in vivo, with FABPpm cDNA increased FABPpm protein in whole muscle (+150%; P < 0.05), at the plasma membrane (+117%; P < 0.05) and in mitochondria (+80%; P < 0.05). In these FABPpm-transfected muscles, palmitate transport into giant vesicles was increased by +73% (P < 0.05), and fatty acid oxidation in intact muscle was increased by +18% (P < 0.05). By contrast, despite the marked increase in mitochondrial FABPpm/mAspAT protein content (+80%), the rate of mitochondrial palmitate oxidation was not altered (P > 0.05). However, electrotransfection increased mAspAT activity by +70% (P < 0.05), and the mitochondrial FABPpm/mAspAT protein content was significantly correlated with mAspAT activity (r= 0.75). It is concluded that FABPpm has two distinct functions depending on its subcellular location: (a) it contributes to increasing sarcolemmal LCFA transport while not contributing directly to LCFA transport into mitochondria; and (b) its primary role at the mitochondria level is to transport reducing equivalents into the matrix
    corecore