11 research outputs found

    The Backup of Wind Power: Analysis of the Parameters Influencing the Wind Power Integration in Electricity Generation Systems (De backup van windenergie: analyse van de invloedsparameters voor de integratie van windenergie in elektriciteitsopwekkingsystemen).

    Get PDF
    Het onderzoek in deze thesis, waarbij de impact van windenergie op elekt riciteitsopwekkingsystemen wordt bestudeerd, heeft een gemeenschappelijk doel, namelijk het bestaan bewijzen van de interactie tussen windenergi e en systemen en het analyseren van deze interactie. Windturbines, net a ls elke andere eenheid voor elektriciteitsopwekking, kan niet enkel op z ichzelf bekeken worden. Voor een correcte interpretatie van de uitbating van systemen met windenergie, moet de dynamische context begrepen worde n. Het onderzoek naar windenergie in elektriciteitsopwekkingsystemen wordt gevoerd volgens drie criteria, namelijk operationele kost, betrouwbaarhe id van het systeem en broeikasgasemissie reductie. Verscheidene cruciale parameters die de impact van wind op deze drie criteria beïnvloeden, zo als windsnelheid- en vraagprofielen, systeemontwerp, brandstofprijzen en het totaal geïnstalleerd vermogen aan windturbines, worden beschouwd. D e wederzijdse invloed van windenergie en het elektriciteitsopwekkingsyst eem kan binnen lange en korte termijn gezien worden. Het intermitterende karakter van wind, dat wordt opgebouwd uit variabiliteit en relatieve o nvoorspelbaarheid is gerelateerd aan deze opsplitsing in respectievelijk lange en korte termijn. Zowel variabiliteit als onvoorspelbaarheid geef t aanleiding tot een noodzaak voor backup van windenergie. De innovatieve aspecten van het onderzoek in deze thesis zijn drieledig. Ten eerste biedt het een algemeen kader voor windenergie en elektricite itsopwekkingsystemen, gebaseerd op literatuuronderzoek en analyses over windsnelheid, windenergie en systeemaspecten. Het doel hiervan is een go ede achtergrond te verschaffen voor de studie van windenergie. In de twe ede plaats levert de thesis nieuwe invalshoeken en methodes voor het ond erzoek van windenergie, zoals de impact van onevenwichtskosten van vier verschillende Europese tariefontwerpen, het gebruik van energieopslag, h et aanhouden van reserves, de invloed van de systeemsamenstelling op de integratie van windturbines en het bepalen van de bijdrage van windturbi nes tot het systeemvermogen. De methodes zijn uitgebouwd om eenvoudig br uikbaar te zijn voor verder onderzoek. Tenslotte verschaft deze thesis n ieuwe inzichten door het toepassen van vermelde methodes op praktische g evallen. Deze inzichten zorgen voor een beter begrip van de vele aspecte n die meespelen bij de interactie tussen windenergie en elektriciteitsop wekkingsystemen, van de voornaamste parameters die hierbij in rekening m oeten gebracht worden en van de kritische kwesties die kunnen ontstaan.wind; power; electricity; generation; systems; cost;

    The Backup of Wind Power: Analysis of the Parameters Influencing the Wind Power Integration in Electricity Generation Systems (De backup van windenergie: analyse van de invloedsparameters voor de integratie van windenergie in elektriciteitsopwekkingsystemen)

    No full text
    Het onderzoek in deze thesis, waarbij de impact van windenergie op elekt riciteitsopwekkingsystemen wordt bestudeerd, heeft een gemeenschappelijk doel, namelijk het bestaan bewijzen van de interactie tussen windenergi e en systemen en het analyseren van deze interactie. Windturbines, net a ls elke andere eenheid voor elektriciteitsopwekking, kan niet enkel op z ichzelf bekeken worden. Voor een correcte interpretatie van de uitbating van systemen met windenergie, moet de dynamische context begrepen worde n. Het onderzoek naar windenergie in elektriciteitsopwekkingsystemen wordt gevoerd volgens drie criteria, namelijk operationele kost, betrouwbaarhe id van het systeem en broeikasgasemissie reductie. Verscheidene cruciale parameters die de impact van wind op deze drie criteria beïnvloeden, zo als windsnelheid- en vraagprofielen, systeemontwerp, brandstofprijzen en het totaal geïnstalleerd vermogen aan windturbines, worden beschouwd. D e wederzijdse invloed van windenergie en het elektriciteitsopwekkingsyst eem kan binnen lange en korte termijn gezien worden. Het intermitterende karakter van wind, dat wordt opgebouwd uit variabiliteit en relatieve o nvoorspelbaarheid is gerelateerd aan deze opsplitsing in respectievelijk lange en korte termijn. Zowel variabiliteit als onvoorspelbaarheid geef t aanleiding tot een noodzaak voor backup van windenergie. De innovatieve aspecten van het onderzoek in deze thesis zijn drieledig. Ten eerste biedt het een algemeen kader voor windenergie en elektricite itsopwekkingsystemen, gebaseerd op literatuuronderzoek en analyses over windsnelheid, windenergie en systeemaspecten. Het doel hiervan is een go ede achtergrond te verschaffen voor de studie van windenergie. In de twe ede plaats levert de thesis nieuwe invalshoeken en methodes voor het ond erzoek van windenergie, zoals de impact van onevenwichtskosten van vier verschillende Europese tariefontwerpen, het gebruik van energieopslag, h et aanhouden van reserves, de invloed van de systeemsamenstelling op de integratie van windturbines en het bepalen van de bijdrage van windturbi nes tot het systeemvermogen. De methodes zijn uitgebouwd om eenvoudig br uikbaar te zijn voor verder onderzoek. Tenslotte verschaft deze thesis n ieuwe inzichten door het toepassen van vermelde methodes op praktische g evallen. Deze inzichten zorgen voor een beter begrip van de vele aspecte n die meespelen bij de interactie tussen windenergie en elektriciteitsop wekkingsystemen, van de voornaamste parameters die hierbij in rekening m oeten gebracht worden en van de kritische kwesties die kunnen ontstaan.nrpages: 276status: publishe

    Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study

    No full text
    Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions' reduction potential of wind power under different circumstances. © 2010 Elsevier Ltd.status: publishe

    Effect of the generation mix on wind power introduction

    No full text
    The specific needs and ensuing costs for wind power integration into electricity generation systems depend to a large extent on the operation, composition and behaviour of the electricity generation system. The differences in the considered systems greatly influence the outcomes regarding wind power integration. The generation mix is studied here. Analyses are performed using a mixed integer linear programming model so as to get more insight in the consequences of the design and operation of electricity generation systems including wind power by looking at three distinct case systems. The model takes into account a multitude of technical specificities of the operation of an electricity generation system. The results show several aspects that are strongly related to the composition of electricity generation systems that influence the integration of wind power in the systems. These aspects range from the composition of the system to more specific technical parameters of the power plants and their operation, such as the marginal power plant and the greenhouse gas emission levels. The results shed some light on the reasons for the divergence in wind power integration studies. Moreover, it can help in gaining insights in the future development of electricity generation systems where wind power is being introduced. © 2009 The Institution of Engineering and Technology.status: publishe

    Influence of massive heat-pump introduction on the electricity-generation mix and the GHG effect: Comparison between Belgium, France, Germany and The Netherlands

    No full text
    To evaluate the environmental impact of massive heat-pump introduction on greenhouse gas (GHG) emissions, dynamic simulations of the overall electricity-generation system have been performed for Belgium. The simulations are carried out with Promix, a tool that models the overall electricity-generation system. For comparison, three heating devices are considered, namely conventional boilers, heat pumps and electrical resistance heating. The introduction of electric heating at the expense of classic heating increases the demand for electricity and generates a shift of emissions from fossil-fuel heating systems to electrical power plants. The replaced classic fossil-fuel-fired heating represents emissions of about 300 kton. With regard to the heat-pump scenarios, both direct heat-pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat-pump heating with a COP of 5 are investigated. The results of the simulations reveal that the massive introduction of heat-pump heating is favourable to the environment. In Belgium, the largest reductions in GHG emissions occur with heat pumps for direct heating, combined with newly commissioned combined cycle (CC) gas-fired plants or with accumulation heat-pump heating. These scenarios bring about overall GHG emission reductions of approximately 200 kton compared with the reference case with conventional heating for the years 2000 and 2010. The amount of additional electricity-related emissions depends on the considered heating device. In 2010, the scenario with accumulation heat pumps results in an overall decrease of Belgian GHG emissions by 0.15% compared with the reference scenario. The expansion of the electricity-generation system with new CC plants has an important favourable impact on GHGs as well. In most cases, the combination of higher electricity demand and the construction of new gas-fired CC plants will lead to lower overall GHG emissions. Copyright © 2007 John Wiley & Sons, Ltd.status: publishe

    Impact of large amounts of wind power on the operation of an electricity generation system : Belgian case study

    No full text
    Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions’ reduction potential of wind power under different circumstances

    Considerations on the backup of wind power: Operational backup

    No full text
    The introduction of wind power into an electricity-generation system on a large scale brings about challenges for the evolution and operation of this system: backup for wind power becomes a necessity. This paper defines various elements that come into play when considering backup for electricity generation from wind power. The backup is split up in capacity backup and operational backup. The focus is set on the short-term, operational aspects of the backup provision. The effects of several short-term operation related parameters are defined and analysed. Most relevant parameters for the operation and needs for wind power backup are the load profiles, the wind power output profiles and the total amount of installed wind power. These are analysed by means of a Mixed Integer Linear Programming (MILP) model through two different methods for operational backup provision, comparing the incremental cost, generated by both methods. The first method applies wind power backup through a 100% provision of additional spinning reserves. The second method does not foresee any spinning reserve and relies on the balancing by the Transmission System Operator (TSO). Both methods result in different additional charges that are being affected by the said parameters. Both the wind profile and the total amount of installed wind power are positively related to the relative cost increase. The load profile is negatively correlated to this increase. The relationship between these parameters and the development of the incremental cost provides an understanding that allows finding better equilibria in the operational backup of wind power.Wind power Backup Operational Electricity-generation system Short run MILP

    Applying Markov chains for the determination of the capacity credit of wind power

    No full text
    Investments in wind power occur everywhere in the world. The value of these investments for integration in an electricity generation system cannot be determined in the same way as conventional electricity sources due to the variable and relative unpredictable nature of wind power. Wind power can only to some limited extend be centrally dispatched. To look at the long term value of investments in wind power, the term capacity credit can be used. It defines the level of conventional generation that can be replaced by wind power generation. Using four adequacy indices, namely Loss-of-load Expectancy (LOLE), Loss of Energy Expectation (LOEE), Loss-of-load Frequency (LOLF) and Expected Interruption Cost (EIC), the Peak load Carrying Capability (PLCC) is established for different sizes and locations of wind power in a system. The PLCC can be seen as a way to quantify the capacity credit of wind power since it determines how much the load can be increased for a given level of wind power investment, while maintaining the system reliability. The adequacy indices are found to vary depending on size and location of wind power investments, therefore causing the PLCC to change accordingly. A Monte Carlo approach is used for determining the indices. Expected and unexpected outages of system elements are simulated and evaluated against system load. Wind power data are generated through Markov chains, based on actual meteorological data from Belgian weather measurement sites, thereby preserving the same statistical properties as the original data.status: publishe

    Influence of massive heat-pump introduction on the electricity-generation mix and the GHG effect: Comparison between Belgium, France, Germany and The Netherlands

    No full text
    To evaluate the environmental impact of massive heat-pump introduction on greenhouse gas (GHG) emissions in different electricity-generation systems, dynamic simulations have been carried out for four European countries, namely, Belgium, France, Germany and the Netherlands. For this purpose, the simulations are performed with Promix, a tool that models the overall electricity-generation system. Three heating devices are considered for each country, namely classic fossil-fuel heating, heat pumps and electric resistance heating. Both direct heat-pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat-pump heating with a COP of 5 are investigated. The introduction of electric heating in an electricity-generation system increases the demand for electricity and generates a shift of emissions from fossil-fuel heating systems to electrical plants. The results of the simulations reveal that the massive introduction of either heat pump or resistance heating is always favourable to the environment in France. The most environmentally friendly scenario in 2010 is projected to reduce GHG emissions by about 3.8 Mton compared to the reference scenario. In Belgium and Germany, the largest reduction in GHG emissions occurs with accumulation heat pumps. Belgium can save up to 220 kton of GHG emissions, while Germany can attain reductions of 800 kton in 2010. In the Netherlands, a significant reduction can be achieved by considering the addition of gas-fired combined cycle (CC) power plants, together with the introduction of electric heating, resulting in emissions savings of 410 kton.Heat pump Greenhouse gas (GHG) Electricity-generation system Belgium France Germany The Netherlands Dynamic simulation Promix

    Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study

    No full text
    Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions' reduction potential of wind power under different circumstances.Wind power Operational cost reduction Greenhouse gas Technical barriers
    corecore